File size: 16,959 Bytes
0324143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import warnings

from basicsr.archs.arch_util import flow_warp
from basicsr.archs.basicvsr_arch import ConvResidualBlocks
from basicsr.archs.spynet_arch import SpyNet
from basicsr.ops.dcn import ModulatedDeformConvPack
from basicsr.utils.registry import ARCH_REGISTRY


@ARCH_REGISTRY.register()
class BasicVSRPlusPlus(nn.Module):
    """BasicVSR++ network structure.



    Support either x4 upsampling or same size output. Since DCN is used in this

    model, it can only be used with CUDA enabled. If CUDA is not enabled,

    feature alignment will be skipped. Besides, we adopt the official DCN

    implementation and the version of torch need to be higher than 1.9.



    ``Paper: BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment``



    Args:

        mid_channels (int, optional): Channel number of the intermediate

            features. Default: 64.

        num_blocks (int, optional): The number of residual blocks in each

            propagation branch. Default: 7.

        max_residue_magnitude (int): The maximum magnitude of the offset

            residue (Eq. 6 in paper). Default: 10.

        is_low_res_input (bool, optional): Whether the input is low-resolution

            or not. If False, the output resolution is equal to the input

            resolution. Default: True.

        spynet_path (str): Path to the pretrained weights of SPyNet. Default: None.

        cpu_cache_length (int, optional): When the length of sequence is larger

            than this value, the intermediate features are sent to CPU. This

            saves GPU memory, but slows down the inference speed. You can

            increase this number if you have a GPU with large memory.

            Default: 100.

    """

    def __init__(self,

                 mid_channels=64,

                 num_blocks=7,

                 max_residue_magnitude=10,

                 is_low_res_input=True,

                 spynet_path=None,

                 cpu_cache_length=100):

        super().__init__()
        self.mid_channels = mid_channels
        self.is_low_res_input = is_low_res_input
        self.cpu_cache_length = cpu_cache_length

        # optical flow
        self.spynet = SpyNet(spynet_path)

        # feature extraction module
        if is_low_res_input:
            self.feat_extract = ConvResidualBlocks(3, mid_channels, 5)
        else:
            self.feat_extract = nn.Sequential(
                nn.Conv2d(3, mid_channels, 3, 2, 1), nn.LeakyReLU(negative_slope=0.1, inplace=True),
                nn.Conv2d(mid_channels, mid_channels, 3, 2, 1), nn.LeakyReLU(negative_slope=0.1, inplace=True),
                ConvResidualBlocks(mid_channels, mid_channels, 5))

        # propagation branches
        self.deform_align = nn.ModuleDict()
        self.backbone = nn.ModuleDict()
        modules = ['backward_1', 'forward_1', 'backward_2', 'forward_2']
        for i, module in enumerate(modules):
            if torch.cuda.is_available():
                self.deform_align[module] = SecondOrderDeformableAlignment(
                    2 * mid_channels,
                    mid_channels,
                    3,
                    padding=1,
                    deformable_groups=16,
                    max_residue_magnitude=max_residue_magnitude)
            self.backbone[module] = ConvResidualBlocks((2 + i) * mid_channels, mid_channels, num_blocks)

        # upsampling module
        self.reconstruction = ConvResidualBlocks(5 * mid_channels, mid_channels, 5)

        self.upconv1 = nn.Conv2d(mid_channels, mid_channels * 4, 3, 1, 1, bias=True)
        self.upconv2 = nn.Conv2d(mid_channels, 64 * 4, 3, 1, 1, bias=True)

        self.pixel_shuffle = nn.PixelShuffle(2)

        self.conv_hr = nn.Conv2d(64, 64, 3, 1, 1)
        self.conv_last = nn.Conv2d(64, 3, 3, 1, 1)
        self.img_upsample = nn.Upsample(scale_factor=4, mode='bilinear', align_corners=False)

        # activation function
        self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)

        # check if the sequence is augmented by flipping
        self.is_mirror_extended = False

        if len(self.deform_align) > 0:
            self.is_with_alignment = True
        else:
            self.is_with_alignment = False
            warnings.warn('Deformable alignment module is not added. '
                          'Probably your CUDA is not configured correctly. DCN can only '
                          'be used with CUDA enabled. Alignment is skipped now.')

    def check_if_mirror_extended(self, lqs):
        """Check whether the input is a mirror-extended sequence.



        If mirror-extended, the i-th (i=0, ..., t-1) frame is equal to the (t-1-i)-th frame.



        Args:

            lqs (tensor): Input low quality (LQ) sequence with shape (n, t, c, h, w).

        """

        if lqs.size(1) % 2 == 0:
            lqs_1, lqs_2 = torch.chunk(lqs, 2, dim=1)
            if torch.norm(lqs_1 - lqs_2.flip(1)) == 0:
                self.is_mirror_extended = True

    def compute_flow(self, lqs):
        """Compute optical flow using SPyNet for feature alignment.



        Note that if the input is an mirror-extended sequence, 'flows_forward'

        is not needed, since it is equal to 'flows_backward.flip(1)'.



        Args:

            lqs (tensor): Input low quality (LQ) sequence with

                shape (n, t, c, h, w).



        Return:

            tuple(Tensor): Optical flow. 'flows_forward' corresponds to the flows used for forward-time propagation \

                (current to previous). 'flows_backward' corresponds to the flows used for backward-time \

                propagation (current to next).

        """

        n, t, c, h, w = lqs.size()
        lqs_1 = lqs[:, :-1, :, :, :].reshape(-1, c, h, w)
        lqs_2 = lqs[:, 1:, :, :, :].reshape(-1, c, h, w)

        flows_backward = self.spynet(lqs_1, lqs_2).view(n, t - 1, 2, h, w)

        if self.is_mirror_extended:  # flows_forward = flows_backward.flip(1)
            flows_forward = flows_backward.flip(1)
        else:
            flows_forward = self.spynet(lqs_2, lqs_1).view(n, t - 1, 2, h, w)

        if self.cpu_cache:
            flows_backward = flows_backward.cpu()
            flows_forward = flows_forward.cpu()

        return flows_forward, flows_backward

    def propagate(self, feats, flows, module_name):
        """Propagate the latent features throughout the sequence.



        Args:

            feats dict(list[tensor]): Features from previous branches. Each

                component is a list of tensors with shape (n, c, h, w).

            flows (tensor): Optical flows with shape (n, t - 1, 2, h, w).

            module_name (str): The name of the propgation branches. Can either

                be 'backward_1', 'forward_1', 'backward_2', 'forward_2'.



        Return:

            dict(list[tensor]): A dictionary containing all the propagated \

                features. Each key in the dictionary corresponds to a \

                propagation branch, which is represented by a list of tensors.

        """

        n, t, _, h, w = flows.size()

        frame_idx = range(0, t + 1)
        flow_idx = range(-1, t)
        mapping_idx = list(range(0, len(feats['spatial'])))
        mapping_idx += mapping_idx[::-1]

        if 'backward' in module_name:
            frame_idx = frame_idx[::-1]
            flow_idx = frame_idx

        feat_prop = flows.new_zeros(n, self.mid_channels, h, w)
        for i, idx in enumerate(frame_idx):
            feat_current = feats['spatial'][mapping_idx[idx]]
            if self.cpu_cache:
                feat_current = feat_current.cuda()
                feat_prop = feat_prop.cuda()
            # second-order deformable alignment
            if i > 0 and self.is_with_alignment:
                flow_n1 = flows[:, flow_idx[i], :, :, :]
                if self.cpu_cache:
                    flow_n1 = flow_n1.cuda()

                cond_n1 = flow_warp(feat_prop, flow_n1.permute(0, 2, 3, 1))

                # initialize second-order features
                feat_n2 = torch.zeros_like(feat_prop)
                flow_n2 = torch.zeros_like(flow_n1)
                cond_n2 = torch.zeros_like(cond_n1)

                if i > 1:  # second-order features
                    feat_n2 = feats[module_name][-2]
                    if self.cpu_cache:
                        feat_n2 = feat_n2.cuda()

                    flow_n2 = flows[:, flow_idx[i - 1], :, :, :]
                    if self.cpu_cache:
                        flow_n2 = flow_n2.cuda()

                    flow_n2 = flow_n1 + flow_warp(flow_n2, flow_n1.permute(0, 2, 3, 1))
                    cond_n2 = flow_warp(feat_n2, flow_n2.permute(0, 2, 3, 1))

                # flow-guided deformable convolution
                cond = torch.cat([cond_n1, feat_current, cond_n2], dim=1)
                feat_prop = torch.cat([feat_prop, feat_n2], dim=1)
                feat_prop = self.deform_align[module_name](feat_prop, cond, flow_n1, flow_n2)

            # concatenate and residual blocks
            feat = [feat_current] + [feats[k][idx] for k in feats if k not in ['spatial', module_name]] + [feat_prop]
            if self.cpu_cache:
                feat = [f.cuda() for f in feat]

            feat = torch.cat(feat, dim=1)
            feat_prop = feat_prop + self.backbone[module_name](feat)
            feats[module_name].append(feat_prop)

            if self.cpu_cache:
                feats[module_name][-1] = feats[module_name][-1].cpu()
                torch.cuda.empty_cache()

        if 'backward' in module_name:
            feats[module_name] = feats[module_name][::-1]

        return feats

    def upsample(self, lqs, feats):
        """Compute the output image given the features.



        Args:

            lqs (tensor): Input low quality (LQ) sequence with

                shape (n, t, c, h, w).

            feats (dict): The features from the propagation branches.



        Returns:

            Tensor: Output HR sequence with shape (n, t, c, 4h, 4w).

        """

        outputs = []
        num_outputs = len(feats['spatial'])

        mapping_idx = list(range(0, num_outputs))
        mapping_idx += mapping_idx[::-1]

        for i in range(0, lqs.size(1)):
            hr = [feats[k].pop(0) for k in feats if k != 'spatial']
            hr.insert(0, feats['spatial'][mapping_idx[i]])
            hr = torch.cat(hr, dim=1)
            if self.cpu_cache:
                hr = hr.cuda()

            hr = self.reconstruction(hr)
            hr = self.lrelu(self.pixel_shuffle(self.upconv1(hr)))
            hr = self.lrelu(self.pixel_shuffle(self.upconv2(hr)))
            hr = self.lrelu(self.conv_hr(hr))
            hr = self.conv_last(hr)
            if self.is_low_res_input:
                hr += self.img_upsample(lqs[:, i, :, :, :])
            else:
                hr += lqs[:, i, :, :, :]

            if self.cpu_cache:
                hr = hr.cpu()
                torch.cuda.empty_cache()

            outputs.append(hr)

        return torch.stack(outputs, dim=1)

    def forward(self, lqs):
        """Forward function for BasicVSR++.



        Args:

            lqs (tensor): Input low quality (LQ) sequence with

                shape (n, t, c, h, w).



        Returns:

            Tensor: Output HR sequence with shape (n, t, c, 4h, 4w).

        """

        n, t, c, h, w = lqs.size()

        # whether to cache the features in CPU
        self.cpu_cache = True if t > self.cpu_cache_length else False

        if self.is_low_res_input:
            lqs_downsample = lqs.clone()
        else:
            lqs_downsample = F.interpolate(
                lqs.view(-1, c, h, w), scale_factor=0.25, mode='bicubic').view(n, t, c, h // 4, w // 4)

        # check whether the input is an extended sequence
        self.check_if_mirror_extended(lqs)

        feats = {}
        # compute spatial features
        if self.cpu_cache:
            feats['spatial'] = []
            for i in range(0, t):
                feat = self.feat_extract(lqs[:, i, :, :, :]).cpu()
                feats['spatial'].append(feat)
                torch.cuda.empty_cache()
        else:
            feats_ = self.feat_extract(lqs.view(-1, c, h, w))
            h, w = feats_.shape[2:]
            feats_ = feats_.view(n, t, -1, h, w)
            feats['spatial'] = [feats_[:, i, :, :, :] for i in range(0, t)]

        # compute optical flow using the low-res inputs
        assert lqs_downsample.size(3) >= 64 and lqs_downsample.size(4) >= 64, (
            'The height and width of low-res inputs must be at least 64, '
            f'but got {h} and {w}.')
        flows_forward, flows_backward = self.compute_flow(lqs_downsample)

        # feature propgation
        for iter_ in [1, 2]:
            for direction in ['backward', 'forward']:
                module = f'{direction}_{iter_}'

                feats[module] = []

                if direction == 'backward':
                    flows = flows_backward
                elif flows_forward is not None:
                    flows = flows_forward
                else:
                    flows = flows_backward.flip(1)

                feats = self.propagate(feats, flows, module)
                if self.cpu_cache:
                    del flows
                    torch.cuda.empty_cache()

        return self.upsample(lqs, feats)


class SecondOrderDeformableAlignment(ModulatedDeformConvPack):
    """Second-order deformable alignment module.



    Args:

        in_channels (int): Same as nn.Conv2d.

        out_channels (int): Same as nn.Conv2d.

        kernel_size (int or tuple[int]): Same as nn.Conv2d.

        stride (int or tuple[int]): Same as nn.Conv2d.

        padding (int or tuple[int]): Same as nn.Conv2d.

        dilation (int or tuple[int]): Same as nn.Conv2d.

        groups (int): Same as nn.Conv2d.

        bias (bool or str): If specified as `auto`, it will be decided by the

            norm_cfg. Bias will be set as True if norm_cfg is None, otherwise

            False.

        max_residue_magnitude (int): The maximum magnitude of the offset

            residue (Eq. 6 in paper). Default: 10.

    """

    def __init__(self, *args, **kwargs):
        self.max_residue_magnitude = kwargs.pop('max_residue_magnitude', 10)

        super(SecondOrderDeformableAlignment, self).__init__(*args, **kwargs)

        self.conv_offset = nn.Sequential(
            nn.Conv2d(3 * self.out_channels + 4, self.out_channels, 3, 1, 1),
            nn.LeakyReLU(negative_slope=0.1, inplace=True),
            nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1),
            nn.LeakyReLU(negative_slope=0.1, inplace=True),
            nn.Conv2d(self.out_channels, self.out_channels, 3, 1, 1),
            nn.LeakyReLU(negative_slope=0.1, inplace=True),
            nn.Conv2d(self.out_channels, 27 * self.deformable_groups, 3, 1, 1),
        )

        self.init_offset()

    def init_offset(self):

        def _constant_init(module, val, bias=0):
            if hasattr(module, 'weight') and module.weight is not None:
                nn.init.constant_(module.weight, val)
            if hasattr(module, 'bias') and module.bias is not None:
                nn.init.constant_(module.bias, bias)

        _constant_init(self.conv_offset[-1], val=0, bias=0)

    def forward(self, x, extra_feat, flow_1, flow_2):
        extra_feat = torch.cat([extra_feat, flow_1, flow_2], dim=1)
        out = self.conv_offset(extra_feat)
        o1, o2, mask = torch.chunk(out, 3, dim=1)

        # offset
        offset = self.max_residue_magnitude * torch.tanh(torch.cat((o1, o2), dim=1))
        offset_1, offset_2 = torch.chunk(offset, 2, dim=1)
        offset_1 = offset_1 + flow_1.flip(1).repeat(1, offset_1.size(1) // 2, 1, 1)
        offset_2 = offset_2 + flow_2.flip(1).repeat(1, offset_2.size(1) // 2, 1, 1)
        offset = torch.cat([offset_1, offset_2], dim=1)

        # mask
        mask = torch.sigmoid(mask)

        return torchvision.ops.deform_conv2d(x, offset, self.weight, self.bias, self.stride, self.padding,
                                             self.dilation, mask)


# if __name__ == '__main__':
#     spynet_path = 'experiments/pretrained_models/flownet/spynet_sintel_final-3d2a1287.pth'
#     model = BasicVSRPlusPlus(spynet_path=spynet_path).cuda()
#     input = torch.rand(1, 2, 3, 64, 64).cuda()
#     output = model(input)
#     print('===================')
#     print(output.shape)