File size: 7,322 Bytes
0324143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import torch
from collections import OrderedDict

from basicsr.archs import build_network
from basicsr.losses import build_loss
from basicsr.utils import get_root_logger
from basicsr.utils.registry import MODEL_REGISTRY
from .video_recurrent_model import VideoRecurrentModel


@MODEL_REGISTRY.register()
class VideoRecurrentGANModel(VideoRecurrentModel):

    def init_training_settings(self):
        train_opt = self.opt['train']

        self.ema_decay = train_opt.get('ema_decay', 0)
        if self.ema_decay > 0:
            logger = get_root_logger()
            logger.info(f'Use Exponential Moving Average with decay: {self.ema_decay}')
            # build network net_g with Exponential Moving Average (EMA)
            # net_g_ema only used for testing on one GPU and saving.
            # There is no need to wrap with DistributedDataParallel
            self.net_g_ema = build_network(self.opt['network_g']).to(self.device)
            # load pretrained model
            load_path = self.opt['path'].get('pretrain_network_g', None)
            if load_path is not None:
                self.load_network(self.net_g_ema, load_path, self.opt['path'].get('strict_load_g', True), 'params_ema')
            else:
                self.model_ema(0)  # copy net_g weight
            self.net_g_ema.eval()

        # define network net_d
        self.net_d = build_network(self.opt['network_d'])
        self.net_d = self.model_to_device(self.net_d)
        self.print_network(self.net_d)

        # load pretrained models
        load_path = self.opt['path'].get('pretrain_network_d', None)
        if load_path is not None:
            param_key = self.opt['path'].get('param_key_d', 'params')
            self.load_network(self.net_d, load_path, self.opt['path'].get('strict_load_d', True), param_key)

        self.net_g.train()
        self.net_d.train()

        # define losses
        if train_opt.get('pixel_opt'):
            self.cri_pix = build_loss(train_opt['pixel_opt']).to(self.device)
        else:
            self.cri_pix = None

        if train_opt.get('perceptual_opt'):
            self.cri_perceptual = build_loss(train_opt['perceptual_opt']).to(self.device)
        else:
            self.cri_perceptual = None

        if train_opt.get('gan_opt'):
            self.cri_gan = build_loss(train_opt['gan_opt']).to(self.device)

        self.net_d_iters = train_opt.get('net_d_iters', 1)
        self.net_d_init_iters = train_opt.get('net_d_init_iters', 0)

        # set up optimizers and schedulers
        self.setup_optimizers()
        self.setup_schedulers()

    def setup_optimizers(self):
        train_opt = self.opt['train']
        if train_opt['fix_flow']:
            normal_params = []
            flow_params = []
            for name, param in self.net_g.named_parameters():
                if 'spynet' in name:  # The fix_flow now only works for spynet.
                    flow_params.append(param)
                else:
                    normal_params.append(param)

            optim_params = [
                {  # add flow params first
                    'params': flow_params,
                    'lr': train_opt['lr_flow']
                },
                {
                    'params': normal_params,
                    'lr': train_opt['optim_g']['lr']
                },
            ]
        else:
            optim_params = self.net_g.parameters()

        # optimizer g
        optim_type = train_opt['optim_g'].pop('type')
        self.optimizer_g = self.get_optimizer(optim_type, optim_params, **train_opt['optim_g'])
        self.optimizers.append(self.optimizer_g)
        # optimizer d
        optim_type = train_opt['optim_d'].pop('type')
        self.optimizer_d = self.get_optimizer(optim_type, self.net_d.parameters(), **train_opt['optim_d'])
        self.optimizers.append(self.optimizer_d)

    def optimize_parameters(self, current_iter):
        logger = get_root_logger()
        # optimize net_g
        for p in self.net_d.parameters():
            p.requires_grad = False

        if self.fix_flow_iter:
            if current_iter == 1:
                logger.info(f'Fix flow network and feature extractor for {self.fix_flow_iter} iters.')
                for name, param in self.net_g.named_parameters():
                    if 'spynet' in name or 'edvr' in name:
                        param.requires_grad_(False)
            elif current_iter == self.fix_flow_iter:
                logger.warning('Train all the parameters.')
                self.net_g.requires_grad_(True)

        self.optimizer_g.zero_grad()
        self.output = self.net_g(self.lq)

        _, _, c, h, w = self.output.size()

        l_g_total = 0
        loss_dict = OrderedDict()
        if (current_iter % self.net_d_iters == 0 and current_iter > self.net_d_init_iters):
            # pixel loss
            if self.cri_pix:
                l_g_pix = self.cri_pix(self.output, self.gt)
                l_g_total += l_g_pix
                loss_dict['l_g_pix'] = l_g_pix
            # perceptual loss
            if self.cri_perceptual:
                l_g_percep, l_g_style = self.cri_perceptual(self.output.view(-1, c, h, w), self.gt.view(-1, c, h, w))
                if l_g_percep is not None:
                    l_g_total += l_g_percep
                    loss_dict['l_g_percep'] = l_g_percep
                if l_g_style is not None:
                    l_g_total += l_g_style
                    loss_dict['l_g_style'] = l_g_style
            # gan loss
            fake_g_pred = self.net_d(self.output.view(-1, c, h, w))
            l_g_gan = self.cri_gan(fake_g_pred, True, is_disc=False)
            l_g_total += l_g_gan
            loss_dict['l_g_gan'] = l_g_gan

            l_g_total.backward()
            self.optimizer_g.step()

        # optimize net_d
        for p in self.net_d.parameters():
            p.requires_grad = True

        self.optimizer_d.zero_grad()
        # real
        # reshape to (b*n, c, h, w)
        real_d_pred = self.net_d(self.gt.view(-1, c, h, w))
        l_d_real = self.cri_gan(real_d_pred, True, is_disc=True)
        loss_dict['l_d_real'] = l_d_real
        loss_dict['out_d_real'] = torch.mean(real_d_pred.detach())
        l_d_real.backward()
        # fake
        # reshape to (b*n, c, h, w)
        fake_d_pred = self.net_d(self.output.view(-1, c, h, w).detach())
        l_d_fake = self.cri_gan(fake_d_pred, False, is_disc=True)
        loss_dict['l_d_fake'] = l_d_fake
        loss_dict['out_d_fake'] = torch.mean(fake_d_pred.detach())
        l_d_fake.backward()
        self.optimizer_d.step()

        self.log_dict = self.reduce_loss_dict(loss_dict)

        if self.ema_decay > 0:
            self.model_ema(decay=self.ema_decay)

    def save(self, epoch, current_iter):
        if self.ema_decay > 0:
            self.save_network([self.net_g, self.net_g_ema], 'net_g', current_iter, param_key=['params', 'params_ema'])
        else:
            self.save_network(self.net_g, 'net_g', current_iter)
        self.save_network(self.net_d, 'net_d', current_iter)
        self.save_training_state(epoch, current_iter)