File size: 18,152 Bytes
0324143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
# Copyright (c) 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is licensed under a Creative Commons
# Attribution-NonCommercial-ShareAlike 4.0 International License.
# You should have received a copy of the license along with this
# work. If not, see http://creativecommons.org/licenses/by-nc-sa/4.0/

"""Streaming images and labels from datasets created with dataset_tool.py."""

import os
import numpy as np
import zipfile
import PIL.Image
import json
import torch
import random

from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels
from basicsr.data.transforms import augment
from basicsr.utils import img2tensor
from basicsr.utils.registry import DATASET_REGISTRY

try:
    import pyspng
except ImportError:
    pyspng = None

KERNEL_OPT = {
    'blur_kernel_size': 21,
    'kernel_list': ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso'],
    'kernel_prob': [0.45, 0.25, 0.12, 0.03, 0.12, 0.03],
    'sinc_prob': 0.1,
    'blur_sigma': [0.2, 3],
    'betag_range': [0.5, 4],
    'betap_range': [1, 2],

    'blur_kernel_size2': 21,
    'kernel_list2': ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso'],
    'kernel_prob2': [0.45, 0.25, 0.12, 0.03, 0.12, 0.03],
    'sinc_prob2': 0.1,
    'blur_sigma2': [0.2, 1.5],
    'betag_range2': [0.5, 4],
    'betap_range2': [1, 2],
    'final_sinc_prob': 0.8,

    'use_hflip': False,
    'use_rot': False
}

DEGRADE_OPT = {
    'resize_prob': [0.2, 0.7, 0.1],  # up, down, keep
    'resize_range': [0.15, 1.5],
    'gaussian_noise_prob': 0.5,
    'noise_range': [1, 30],
    'poisson_scale_range': [0.05, 3],
    'gray_noise_prob': 0.4,
    'jpeg_range': [30, 95],

    # the second degradation process
    'second_blur_prob': 0.8,
    'resize_prob2': [0.3, 0.4, 0.3],  # up, down, keep
    'resize_range2': [0.3, 1.2],
    'gaussian_noise_prob2': 0.5,
    'noise_range2': [1, 25],
    'poisson_scale_range2': [0.05, 2.5],
    'gray_noise_prob2': 0.4,
    'jpeg_range2': [30, 95],

    'gt_size': 512,
    'no_degradation_prob': 0.01,
    'use_usm': True,
    'sf': 4,
    'random_size': False,
    'resize_lq': False
}

#----------------------------------------------------------------------------
# Abstract base class for datasets.

class Dataset(torch.utils.data.Dataset):
    def __init__(self,

        name,                   # Name of the dataset.

        raw_shape,              # Shape of the raw image data (NCHW).

        use_labels  = True,     # Enable conditioning labels? False = label dimension is zero.

        max_size    = None,     # Artificially limit the size of the dataset. None = no limit. Applied before xflip.

        xflip       = False,    # Artificially double the size of the dataset via x-flips. Applied after max_size.

        random_seed = 0,        # Random seed to use when applying max_size.

        cache       = False,    # Cache images in CPU memory?

    ):
        self._name = name
        self._raw_shape = list(raw_shape)
        self._use_labels = use_labels
        self._cache = cache
        self._cached_images = dict() # {raw_idx: np.ndarray, ...}
        self._raw_labels = None
        self._label_shape = None

        # Apply max_size.
        self._raw_idx = np.arange(self._raw_shape[0], dtype=np.int64)
        if (max_size is not None) and (self._raw_idx.size > max_size):
            np.random.RandomState(random_seed % (1 << 31)).shuffle(self._raw_idx)
            self._raw_idx = np.sort(self._raw_idx[:max_size])

        # Apply xflip.
        self._xflip = np.zeros(self._raw_idx.size, dtype=np.uint8)
        if xflip:
            self._raw_idx = np.tile(self._raw_idx, 2)
            self._xflip = np.concatenate([self._xflip, np.ones_like(self._xflip)])

    def _get_raw_labels(self):
        if self._raw_labels is None:
            self._raw_labels = self._load_raw_labels() if self._use_labels else None
            if self._raw_labels is None:
                self._raw_labels = np.zeros([self._raw_shape[0], 0], dtype=np.float32)
            assert isinstance(self._raw_labels, np.ndarray)
            assert self._raw_labels.shape[0] == self._raw_shape[0]
            assert self._raw_labels.dtype in [np.float32, np.int64]
            if self._raw_labels.dtype == np.int64:
                assert self._raw_labels.ndim == 1
                assert np.all(self._raw_labels >= 0)
        return self._raw_labels

    def close(self): # to be overridden by subclass
        pass

    def _load_raw_image(self, raw_idx): # to be overridden by subclass
        raise NotImplementedError

    def _load_raw_labels(self): # to be overridden by subclass
        raise NotImplementedError

    def __getstate__(self):
        return dict(self.__dict__, _raw_labels=None)

    def __del__(self):
        try:
            self.close()
        except:
            pass

    def __len__(self):
        return self._raw_idx.size

    def __getitem__(self, idx):
        raw_idx = self._raw_idx[idx]
        image = self._cached_images.get(raw_idx, None)
        if image is None:
            image = self._load_raw_image(raw_idx)
            if self._cache:
                self._cached_images[raw_idx] = image
        assert isinstance(image, np.ndarray)
        assert list(image.shape) == self._raw_shape[1:]
        if self._xflip[idx]:
            assert image.ndim == 3 # CHW
            image = image[:, :, ::-1]
        return image.copy(), self.get_label(idx)

    def get_label(self, idx):
        label = self._get_raw_labels()[self._raw_idx[idx]]
        if label.dtype == np.int64:
            onehot = np.zeros(self.label_shape, dtype=np.float32)
            onehot[label] = 1
            label = onehot
        return label.copy()

    def get_details(self, idx):
        d = dict()
        d['raw_idx'] = int(self._raw_idx[idx])
        d['xflip'] = (int(self._xflip[idx]) != 0)
        d['raw_label'] = self._get_raw_labels()[d['raw_idx']].copy()
        return d

    @property
    def name(self):
        return self._name

    @property
    def image_shape(self): # [CHW]
        return list(self._raw_shape[1:])

    @property
    def num_channels(self):
        assert len(self.image_shape) == 3 # CHW
        return self.image_shape[0]

    @property
    def resolution(self):
        assert len(self.image_shape) == 3 # CHW
        assert self.image_shape[1] == self.image_shape[2]
        return self.image_shape[1]

    @property
    def label_shape(self):
        if self._label_shape is None:
            raw_labels = self._get_raw_labels()
            if raw_labels.dtype == np.int64:
                self._label_shape = [int(np.max(raw_labels)) + 1]
            else:
                self._label_shape = raw_labels.shape[1:]
        return list(self._label_shape)

    @property
    def label_dim(self):
        assert len(self.label_shape) == 1
        return self.label_shape[0]

    @property
    def has_labels(self):
        return any(x != 0 for x in self.label_shape)

    @property
    def has_onehot_labels(self):
        return self._get_raw_labels().dtype == np.int64

#----------------------------------------------------------------------------
# Dataset subclass that loads images recursively from the specified directory
# or ZIP file.

class ImageFolderDataset(Dataset):
    def __init__(self,

        path,                   # Path to directory or zip.

        resolution      = None, # Ensure specific resolution, None = anything goes.

        **super_kwargs,         # Additional arguments for the Dataset base class.

    ):
        self._path = path
        self._zipfile = None

        if os.path.isdir(self._path):
            self._type = 'dir'
            self._all_fnames = {os.path.relpath(os.path.join(root, fname), start=self._path) for root, _dirs, files in os.walk(self._path) for fname in files}
        elif self._file_ext(self._path) == '.zip':
            self._type = 'zip'
            self._all_fnames = set(self._get_zipfile().namelist())
        else:
            raise IOError('Path must point to a directory or zip')

        PIL.Image.init()
        supported_ext = PIL.Image.EXTENSION.keys() | {'.npy'}
        self._image_fnames = sorted(fname for fname in self._all_fnames if self._file_ext(fname) in supported_ext)
        if len(self._image_fnames) == 0:
            raise IOError('No image files found in the specified path')

        name = os.path.splitext(os.path.basename(self._path))[0]
        raw_shape = [len(self._image_fnames)] + list(self._load_raw_image(0).shape)
        if resolution is not None and (raw_shape[2] != resolution or raw_shape[3] != resolution):
            raise IOError('Image files do not match the specified resolution')
        super().__init__(name=name, raw_shape=raw_shape, **super_kwargs)

    @staticmethod
    def _file_ext(fname):
        return os.path.splitext(fname)[1].lower()

    def _get_zipfile(self):
        assert self._type == 'zip'
        if self._zipfile is None:
            self._zipfile = zipfile.ZipFile(self._path)
        return self._zipfile

    def _open_file(self, fname):
        if self._type == 'dir':
            return open(os.path.join(self._path, fname), 'rb')
        if self._type == 'zip':
            return self._get_zipfile().open(fname, 'r')
        return None

    def close(self):
        try:
            if self._zipfile is not None:
                self._zipfile.close()
        finally:
            self._zipfile = None

    def __getstate__(self):
        return dict(super().__getstate__(), _zipfile=None)

    def _load_raw_image(self, raw_idx):
        fname = self._image_fnames[raw_idx]
        ext = self._file_ext(fname)
        with self._open_file(fname) as f:
            if ext == '.npy':
                image = np.load(f)
                image = image.reshape(-1, *image.shape[-2:])
            elif ext == '.png' and pyspng is not None:
                image = pyspng.load(f.read())
                image = image.reshape(*image.shape[:2], -1).transpose(2, 0, 1)
            else:
                image = np.array(PIL.Image.open(f))
                image = image.reshape(*image.shape[:2], -1).transpose(2, 0, 1)
        return image

    def _load_raw_labels(self):
        fname = 'dataset.json'
        if fname not in self._all_fnames:
            return None
        with self._open_file(fname) as f:
            labels = json.load(f)['labels']
        if labels is None:
            return None
        labels = dict(labels)
        labels = [labels[fname.replace('\\', '/')] for fname in self._image_fnames]
        labels = np.array(labels)
        labels = labels.astype({1: np.int64, 2: np.float32}[labels.ndim])
        return labels

#----------------------------------------------------------------------------
@DATASET_REGISTRY.register(suffix='basicsr')
class IRImageFolderDataset(ImageFolderDataset):
    def __init__(self,

        opt=None,        # Degradation kernel config.

        **super_kwargs,         # Additional arguments for the Dataset base class.

    ):
        if opt is None: opt = KERNEL_OPT
        self.opt = opt
        super().__init__(**super_kwargs)

        # blur settings for the first degradation
        self.blur_kernel_size = opt['blur_kernel_size']
        self.kernel_list = opt['kernel_list']
        self.kernel_prob = opt['kernel_prob']  # a list for each kernel probability
        self.blur_sigma = opt['blur_sigma']
        self.betag_range = opt['betag_range']  # betag used in generalized Gaussian blur kernels
        self.betap_range = opt['betap_range']  # betap used in plateau blur kernels
        self.sinc_prob = opt['sinc_prob']  # the probability for sinc filters

        # blur settings for the second degradation
        self.blur_kernel_size2 = opt['blur_kernel_size2']
        self.kernel_list2 = opt['kernel_list2']
        self.kernel_prob2 = opt['kernel_prob2']
        self.blur_sigma2 = opt['blur_sigma2']
        self.betag_range2 = opt['betag_range2']
        self.betap_range2 = opt['betap_range2']
        self.sinc_prob2 = opt['sinc_prob2']

        # a final sinc filter
        self.final_sinc_prob = opt['final_sinc_prob']

        self.kernel_range = [2 * v + 1 for v in range(3, 11)]  # kernel size ranges from 7 to 21
        # TODO: kernel range is now hard-coded, should be in the configure file
        self.pulse_tensor = torch.zeros(21, 21).float()  # convolving with pulse tensor brings no blurry effect
        self.pulse_tensor[10, 10] = 1

    def _load_raw_image(self, raw_idx):
        fname = self._image_fnames[raw_idx]
        ext = self._file_ext(fname)
        with self._open_file(fname) as f:
            if ext == '.npy':
                image = np.load(f)
                image = image.reshape(-1, *image.shape[-2:])
            elif ext == '.png' and pyspng is not None:
                image = pyspng.load(f.read())
                image = image.reshape(*image.shape[:2], -1).transpose(2, 0, 1)
            else:
                image = np.array(PIL.Image.open(f))
                image = image.reshape(*image.shape[:2], -1).transpose(2, 0, 1)
        return image

    def __getitem__(self, idx):
        raw_idx = self._raw_idx[idx]
        image = self._cached_images.get(raw_idx, None)
        if image is None:
            image = self._load_raw_image(raw_idx)
            if self._cache:
                self._cached_images[raw_idx] = image

        assert isinstance(image, np.ndarray), type(image)
        assert list(image.shape) == self._raw_shape[1:], image.shape

        # # FIXME: flip or rotate
        # image = augment(image, self.opt['use_hflip'], self.opt['use_rot'])

        image = image.astype(np.float32) / 255.

        # ------------------------ Generate kernels (used in the first degradation) ------------------------ #
        kernel_size = random.choice(self.kernel_range)
        if np.random.uniform() < self.opt['sinc_prob']:
            # this sinc filter setting is for kernels ranging from [7, 21]
            if kernel_size < 13:
                omega_c = np.random.uniform(np.pi / 3, np.pi)
            else:
                omega_c = np.random.uniform(np.pi / 5, np.pi)
            kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
        else:
            kernel = random_mixed_kernels(
                self.kernel_list,
                self.kernel_prob,
                kernel_size,
                self.blur_sigma,
                self.blur_sigma, [-np.pi, np.pi],
                self.betag_range,
                self.betap_range,
                noise_range=None)
        # pad kernel
        pad_size = (21 - kernel_size) // 2
        kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size)))

        # ------------------------ Generate kernels (used in the second degradation) ------------------------ #
        kernel_size = random.choice(self.kernel_range)
        if np.random.uniform() < self.opt['sinc_prob2']:
            if kernel_size < 13:
                omega_c = np.random.uniform(np.pi / 3, np.pi)
            else:
                omega_c = np.random.uniform(np.pi / 5, np.pi)
            kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
        else:
            kernel2 = random_mixed_kernels(
                self.kernel_list2,
                self.kernel_prob2,
                kernel_size,
                self.blur_sigma2,
                self.blur_sigma2, [-np.pi, np.pi],
                self.betag_range2,
                self.betap_range2,
                noise_range=None)

        # pad kernel
        pad_size = (21 - kernel_size) // 2
        kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size)))

        # ------------------------------------- the final sinc kernel ------------------------------------- #
        if np.random.uniform() < self.opt['final_sinc_prob']:
            kernel_size = random.choice(self.kernel_range)
            omega_c = np.random.uniform(np.pi / 3, np.pi)
            sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=21)
            sinc_kernel = torch.FloatTensor(sinc_kernel)
        else:
            sinc_kernel = self.pulse_tensor

        # numpy to tensor
        img_gt = torch.from_numpy(image).float()

        kernel = torch.FloatTensor(kernel)
        kernel2 = torch.FloatTensor(kernel2)

        return_d = {'image': img_gt, 'kernel1': kernel, 'kernel2': kernel2, 'sinc_kernel': sinc_kernel}
        return return_d

        # return image.copy(), self.get_label(idx)

def collate_fn(examples, with_prior_preservation=False):
    pixel_values = [example["img_tensor"] for example in examples]
    kernel1 = [example["kernel1"] for example in examples]
    kernel2 = [example["kernel2"] for example in examples]
    sinc_kernel = [example["sinc_kernel"] for example in examples]
    pil_image = [example["image"] for example in examples]

    if with_prior_preservation:
        raise NotImplementedError("Prior preservation not implemented.")

    pixel_values = torch.stack(pixel_values)
    pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()

    kernel1 = torch.stack(kernel1)
    kernel1 = kernel1.to(memory_format=torch.contiguous_format).float()
    kernel2 = torch.stack(kernel2)
    kernel2 = kernel2.to(memory_format=torch.contiguous_format).float()
    sinc_kernel = torch.stack(sinc_kernel)
    sinc_kernel = sinc_kernel.to(memory_format=torch.contiguous_format).float()

    batch = {"image": pil_image, "img_tensor": pixel_values, "kernel1": kernel1, "kernel2": kernel2, "sinc_kernel": sinc_kernel}
    return batch