File size: 11,237 Bytes
0324143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import os
import torch
from typing import List
from collections import namedtuple, OrderedDict

def is_torch2_available():
    return hasattr(torch.nn.functional, "scaled_dot_product_attention")

if is_torch2_available():
    from .attention_processor import (
        AttnProcessor2_0 as AttnProcessor,
    )
    from .attention_processor import (
        CNAttnProcessor2_0 as CNAttnProcessor,
    )
    from .attention_processor import (
        IPAttnProcessor2_0 as IPAttnProcessor,
    )
    from .attention_processor import (
        TA_IPAttnProcessor2_0 as TA_IPAttnProcessor,
    )
else:
    from .attention_processor import AttnProcessor, CNAttnProcessor, IPAttnProcessor, TA_IPAttnProcessor


class ImageProjModel(torch.nn.Module):
    """Projection Model"""

    def __init__(self, cross_attention_dim=2048, clip_embeddings_dim=1280, clip_extra_context_tokens=4):
        super().__init__()

        self.cross_attention_dim = cross_attention_dim
        self.clip_extra_context_tokens = clip_extra_context_tokens
        self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
        self.norm = torch.nn.LayerNorm(cross_attention_dim)

    def forward(self, image_embeds):
        embeds = image_embeds
        clip_extra_context_tokens = self.proj(embeds).reshape(
            -1, self.clip_extra_context_tokens, self.cross_attention_dim
        )
        clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
        return clip_extra_context_tokens


class MLPProjModel(torch.nn.Module):
    """SD model with image prompt"""
    def __init__(self, cross_attention_dim=2048, clip_embeddings_dim=1280):
        super().__init__()
        
        self.proj = torch.nn.Sequential(
            torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim),
            torch.nn.GELU(),
            torch.nn.Linear(clip_embeddings_dim, cross_attention_dim),
            torch.nn.LayerNorm(cross_attention_dim)
        )
        
    def forward(self, image_embeds):
        clip_extra_context_tokens = self.proj(image_embeds)
        return clip_extra_context_tokens


class MultiIPAdapterImageProjection(torch.nn.Module):
    def __init__(self, IPAdapterImageProjectionLayers):
        super().__init__()
        self.image_projection_layers = torch.nn.ModuleList(IPAdapterImageProjectionLayers)

    def forward(self, image_embeds: List[torch.FloatTensor]):
        projected_image_embeds = []

        # currently, we accept `image_embeds` as
        #  1. a tensor (deprecated) with shape [batch_size, embed_dim] or [batch_size, sequence_length, embed_dim]
        #  2. list of `n` tensors where `n` is number of ip-adapters, each tensor can hae shape [batch_size, num_images, embed_dim] or [batch_size, num_images, sequence_length, embed_dim]
        if not isinstance(image_embeds, list):
            image_embeds = [image_embeds.unsqueeze(1)]

        if len(image_embeds) != len(self.image_projection_layers):
            raise ValueError(
                f"image_embeds must have the same length as image_projection_layers, got {len(image_embeds)} and {len(self.image_projection_layers)}"
            )

        for image_embed, image_projection_layer in zip(image_embeds, self.image_projection_layers):
            batch_size, num_images = image_embed.shape[0], image_embed.shape[1]
            image_embed = image_embed.reshape((batch_size * num_images,) + image_embed.shape[2:])
            image_embed = image_projection_layer(image_embed)
            # image_embed = image_embed.reshape((batch_size, num_images) + image_embed.shape[1:])

            projected_image_embeds.append(image_embed)

        return projected_image_embeds


class IPAdapter(torch.nn.Module):
    """IP-Adapter"""
    def __init__(self, unet, image_proj_model, adapter_modules, ckpt_path=None):
        super().__init__()
        self.unet = unet
        self.image_proj = image_proj_model
        self.ip_adapter = adapter_modules

        if ckpt_path is not None:
            self.load_from_checkpoint(ckpt_path)

    def forward(self, noisy_latents, timesteps, encoder_hidden_states, image_embeds):
        ip_tokens = self.image_proj(image_embeds)
        encoder_hidden_states = torch.cat([encoder_hidden_states, ip_tokens], dim=1)
        # Predict the noise residual
        noise_pred = self.unet(noisy_latents, timesteps, encoder_hidden_states).sample
        return noise_pred

    def load_from_checkpoint(self, ckpt_path: str):
        # Calculate original checksums
        orig_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj.parameters()]))
        orig_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.ip_adapter.parameters()]))

        state_dict = torch.load(ckpt_path, map_location="cpu")
        keys = list(state_dict.keys())
        if keys != ["image_proj", "ip_adapter"]:
            state_dict = revise_state_dict(state_dict)

        # Load state dict for image_proj_model and adapter_modules
        self.image_proj.load_state_dict(state_dict["image_proj"], strict=True)
        self.ip_adapter.load_state_dict(state_dict["ip_adapter"], strict=True)

        # Calculate new checksums
        new_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj.parameters()]))
        new_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.ip_adapter.parameters()]))

        # Verify if the weights have changed
        assert orig_ip_proj_sum != new_ip_proj_sum, "Weights of image_proj_model did not change!"
        assert orig_adapter_sum != new_adapter_sum, "Weights of adapter_modules did not change!"


class IPAdapterPlus(torch.nn.Module):
    """IP-Adapter"""
    def __init__(self, unet, image_proj_model, adapter_modules, ckpt_path=None):
        super().__init__()
        self.unet = unet
        self.image_proj = image_proj_model
        self.ip_adapter = adapter_modules

        if ckpt_path is not None:
            self.load_from_checkpoint(ckpt_path)

    def forward(self, noisy_latents, timesteps, encoder_hidden_states, image_embeds):
        ip_tokens = self.image_proj(image_embeds)
        encoder_hidden_states = torch.cat([encoder_hidden_states, ip_tokens], dim=1)
        # Predict the noise residual
        noise_pred = self.unet(noisy_latents, timesteps, encoder_hidden_states).sample
        return noise_pred

    def load_from_checkpoint(self, ckpt_path: str):
        # Calculate original checksums
        orig_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj.parameters()]))
        orig_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.ip_adapter.parameters()]))
        org_unet_sum = []
        for attn_name, attn_proc in self.unet.attn_processors.items():
            if isinstance(attn_proc, (TA_IPAttnProcessor, IPAttnProcessor)):
                org_unet_sum.append(torch.sum(torch.stack([torch.sum(p) for p in attn_proc.parameters()])))
        org_unet_sum = torch.sum(torch.stack(org_unet_sum))

        state_dict = torch.load(ckpt_path, map_location="cpu")
        keys = list(state_dict.keys())
        if keys != ["image_proj", "ip_adapter"]:
            state_dict = revise_state_dict(state_dict)

        # Check if 'latents' exists in both the saved state_dict and the current model's state_dict
        strict_load_image_proj_model = True
        if "latents" in state_dict["image_proj"] and "latents" in self.image_proj.state_dict():
            # Check if the shapes are mismatched
            if state_dict["image_proj"]["latents"].shape != self.image_proj.state_dict()["latents"].shape:
                print(f"Shapes of 'image_proj.latents' in checkpoint {ckpt_path} and current model do not match.")
                print("Removing 'latents' from checkpoint and loading the rest of the weights.")
                del state_dict["image_proj"]["latents"]
                strict_load_image_proj_model = False

        # Load state dict for image_proj_model and adapter_modules
        self.image_proj.load_state_dict(state_dict["image_proj"], strict=strict_load_image_proj_model)
        missing_key, unexpected_key = self.ip_adapter.load_state_dict(state_dict["ip_adapter"], strict=False)
        if len(missing_key) > 0:
            for ms in missing_key:
                if "ln" not in ms:
                    raise ValueError(f"Missing key in adapter_modules: {len(missing_key)}")
        if len(unexpected_key) > 0:
            raise ValueError(f"Unexpected key in adapter_modules: {len(unexpected_key)}")

        # Calculate new checksums
        new_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj.parameters()]))
        new_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.ip_adapter.parameters()]))

        # Verify if the weights loaded to unet
        unet_sum = []
        for attn_name, attn_proc in self.unet.attn_processors.items():
            if isinstance(attn_proc, (TA_IPAttnProcessor, IPAttnProcessor)):
                unet_sum.append(torch.sum(torch.stack([torch.sum(p) for p in attn_proc.parameters()])))
        unet_sum = torch.sum(torch.stack(unet_sum))

        assert org_unet_sum != unet_sum, "Weights of adapter_modules in unet did not change!"
        assert (unet_sum - new_adapter_sum < 1e-4), "Weights of adapter_modules did not load to unet!"

        # Verify if the weights have changed
        assert orig_ip_proj_sum != new_ip_proj_sum, "Weights of image_proj_model did not change!"
        assert orig_adapter_sum != new_adapter_sum, "Weights of adapter_mod`ules did not change!"


class IPAdapterXL(IPAdapter):
    """SDXL"""

    def forward(self, noisy_latents, timesteps, encoder_hidden_states, unet_added_cond_kwargs, image_embeds):
        ip_tokens = self.image_proj(image_embeds)
        encoder_hidden_states = torch.cat([encoder_hidden_states, ip_tokens], dim=1)
        # Predict the noise residual
        noise_pred = self.unet(noisy_latents, timesteps, encoder_hidden_states, added_cond_kwargs=unet_added_cond_kwargs).sample
        return noise_pred


class IPAdapterPlusXL(IPAdapterPlus):
    """IP-Adapter with fine-grained features"""

    def forward(self, noisy_latents, timesteps, encoder_hidden_states, unet_added_cond_kwargs, image_embeds):
        ip_tokens = self.image_proj(image_embeds)
        encoder_hidden_states = torch.cat([encoder_hidden_states, ip_tokens], dim=1)
        # Predict the noise residual
        noise_pred = self.unet(noisy_latents, timesteps, encoder_hidden_states, added_cond_kwargs=unet_added_cond_kwargs).sample
        return noise_pred


class IPAdapterFull(IPAdapterPlus):
    """IP-Adapter with full features"""

    def init_proj(self):
        image_proj_model = MLPProjModel(
            cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
            clip_embeddings_dim=self.image_encoder.config.hidden_size,
        ).to(self.device, dtype=torch.float16)
        return image_proj_model