File size: 30,875 Bytes
0324143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
from typing import Any, Callable, Dict, List, Optional, Union

import numpy as np
import torch
from transformers import (
    ClapFeatureExtractor,
    ClapModel,
    ClapTextModelWithProjection,
    RobertaTokenizer,
    RobertaTokenizerFast,
    SpeechT5HifiGan,
)

from ...models import AutoencoderKL, UNet2DConditionModel
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import (
    is_accelerate_available,
    is_accelerate_version,
    is_librosa_available,
    logging,
    replace_example_docstring,
)
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline, StableDiffusionMixin


if is_librosa_available():
    import librosa

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

EXAMPLE_DOC_STRING = """

    Examples:

        ```py

        >>> from diffusers import MusicLDMPipeline

        >>> import torch

        >>> import scipy



        >>> repo_id = "ucsd-reach/musicldm"

        >>> pipe = MusicLDMPipeline.from_pretrained(repo_id, torch_dtype=torch.float16)

        >>> pipe = pipe.to("cuda")



        >>> prompt = "Techno music with a strong, upbeat tempo and high melodic riffs"

        >>> audio = pipe(prompt, num_inference_steps=10, audio_length_in_s=5.0).audios[0]



        >>> # save the audio sample as a .wav file

        >>> scipy.io.wavfile.write("techno.wav", rate=16000, data=audio)

        ```

"""


class MusicLDMPipeline(DiffusionPipeline, StableDiffusionMixin):
    r"""

    Pipeline for text-to-audio generation using MusicLDM.



    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods

    implemented for all pipelines (downloading, saving, running on a particular device, etc.).



    Args:

        vae ([`AutoencoderKL`]):

            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.

        text_encoder ([`~transformers.ClapModel`]):

            Frozen text-audio embedding model (`ClapTextModel`), specifically the

            [laion/clap-htsat-unfused](https://huggingface.co./laion/clap-htsat-unfused) variant.

        tokenizer ([`PreTrainedTokenizer`]):

            A [`~transformers.RobertaTokenizer`] to tokenize text.

        feature_extractor ([`~transformers.ClapFeatureExtractor`]):

            Feature extractor to compute mel-spectrograms from audio waveforms.

        unet ([`UNet2DConditionModel`]):

            A `UNet2DConditionModel` to denoise the encoded audio latents.

        scheduler ([`SchedulerMixin`]):

            A scheduler to be used in combination with `unet` to denoise the encoded audio latents. Can be one of

            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].

        vocoder ([`~transformers.SpeechT5HifiGan`]):

            Vocoder of class `SpeechT5HifiGan`.

    """

    def __init__(

        self,

        vae: AutoencoderKL,

        text_encoder: Union[ClapTextModelWithProjection, ClapModel],

        tokenizer: Union[RobertaTokenizer, RobertaTokenizerFast],

        feature_extractor: Optional[ClapFeatureExtractor],

        unet: UNet2DConditionModel,

        scheduler: KarrasDiffusionSchedulers,

        vocoder: SpeechT5HifiGan,

    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            feature_extractor=feature_extractor,
            unet=unet,
            scheduler=scheduler,
            vocoder=vocoder,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)

    def _encode_prompt(

        self,

        prompt,

        device,

        num_waveforms_per_prompt,

        do_classifier_free_guidance,

        negative_prompt=None,

        prompt_embeds: Optional[torch.FloatTensor] = None,

        negative_prompt_embeds: Optional[torch.FloatTensor] = None,

    ):
        r"""

        Encodes the prompt into text encoder hidden states.



        Args:

            prompt (`str` or `List[str]`, *optional*):

                prompt to be encoded

            device (`torch.device`):

                torch device

            num_waveforms_per_prompt (`int`):

                number of waveforms that should be generated per prompt

            do_classifier_free_guidance (`bool`):

                whether to use classifier free guidance or not

            negative_prompt (`str` or `List[str]`, *optional*):

                The prompt or prompts not to guide the audio generation. If not defined, one has to pass

                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is

                less than `1`).

            prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not

                provided, text embeddings will be generated from `prompt` input argument.

            negative_prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt

                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input

                argument.

        """
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids
            attention_mask = text_inputs.attention_mask
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(
                    untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
                )
                logger.warning(
                    "The following part of your input was truncated because CLAP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )

            prompt_embeds = self.text_encoder.get_text_features(
                text_input_ids.to(device),
                attention_mask=attention_mask.to(device),
            )

        prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.text_model.dtype, device=device)

        (
            bs_embed,
            seq_len,
        ) = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_waveforms_per_prompt)
        prompt_embeds = prompt_embeds.view(bs_embed * num_waveforms_per_prompt, seq_len)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )

            uncond_input_ids = uncond_input.input_ids.to(device)
            attention_mask = uncond_input.attention_mask.to(device)

            negative_prompt_embeds = self.text_encoder.get_text_features(
                uncond_input_ids,
                attention_mask=attention_mask,
            )

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.text_model.dtype, device=device)

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_waveforms_per_prompt)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_waveforms_per_prompt, seq_len)

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

        return prompt_embeds

    # Copied from diffusers.pipelines.audioldm.pipeline_audioldm.AudioLDMPipeline.mel_spectrogram_to_waveform
    def mel_spectrogram_to_waveform(self, mel_spectrogram):
        if mel_spectrogram.dim() == 4:
            mel_spectrogram = mel_spectrogram.squeeze(1)

        waveform = self.vocoder(mel_spectrogram)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        waveform = waveform.cpu().float()
        return waveform

    # Copied from diffusers.pipelines.audioldm2.pipeline_audioldm2.AudioLDM2Pipeline.score_waveforms
    def score_waveforms(self, text, audio, num_waveforms_per_prompt, device, dtype):
        if not is_librosa_available():
            logger.info(
                "Automatic scoring of the generated audio waveforms against the input prompt text requires the "
                "`librosa` package to resample the generated waveforms. Returning the audios in the order they were "
                "generated. To enable automatic scoring, install `librosa` with: `pip install librosa`."
            )
            return audio
        inputs = self.tokenizer(text, return_tensors="pt", padding=True)
        resampled_audio = librosa.resample(
            audio.numpy(), orig_sr=self.vocoder.config.sampling_rate, target_sr=self.feature_extractor.sampling_rate
        )
        inputs["input_features"] = self.feature_extractor(
            list(resampled_audio), return_tensors="pt", sampling_rate=self.feature_extractor.sampling_rate
        ).input_features.type(dtype)
        inputs = inputs.to(device)

        # compute the audio-text similarity score using the CLAP model
        logits_per_text = self.text_encoder(**inputs).logits_per_text
        # sort by the highest matching generations per prompt
        indices = torch.argsort(logits_per_text, dim=1, descending=True)[:, :num_waveforms_per_prompt]
        audio = torch.index_select(audio, 0, indices.reshape(-1).cpu())
        return audio

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    # Copied from diffusers.pipelines.audioldm.pipeline_audioldm.AudioLDMPipeline.check_inputs
    def check_inputs(

        self,

        prompt,

        audio_length_in_s,

        vocoder_upsample_factor,

        callback_steps,

        negative_prompt=None,

        prompt_embeds=None,

        negative_prompt_embeds=None,

    ):
        min_audio_length_in_s = vocoder_upsample_factor * self.vae_scale_factor
        if audio_length_in_s < min_audio_length_in_s:
            raise ValueError(
                f"`audio_length_in_s` has to be a positive value greater than or equal to {min_audio_length_in_s}, but "
                f"is {audio_length_in_s}."
            )

        if self.vocoder.config.model_in_dim % self.vae_scale_factor != 0:
            raise ValueError(
                f"The number of frequency bins in the vocoder's log-mel spectrogram has to be divisible by the "
                f"VAE scale factor, but got {self.vocoder.config.model_in_dim} bins and a scale factor of "
                f"{self.vae_scale_factor}."
            )

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

    # Copied from diffusers.pipelines.audioldm.pipeline_audioldm.AudioLDMPipeline.prepare_latents
    def prepare_latents(self, batch_size, num_channels_latents, height, dtype, device, generator, latents=None):
        shape = (
            batch_size,
            num_channels_latents,
            int(height) // self.vae_scale_factor,
            int(self.vocoder.config.model_in_dim) // self.vae_scale_factor,
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    def enable_model_cpu_offload(self, gpu_id=0):
        r"""

        Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared

        to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`

        method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with

        `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.

        """
        if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
            from accelerate import cpu_offload_with_hook
        else:
            raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")

        device = torch.device(f"cuda:{gpu_id}")

        if self.device.type != "cpu":
            self.to("cpu", silence_dtype_warnings=True)
            torch.cuda.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)

        model_sequence = [
            self.text_encoder.text_model,
            self.text_encoder.text_projection,
            self.unet,
            self.vae,
            self.vocoder,
            self.text_encoder,
        ]

        hook = None
        for cpu_offloaded_model in model_sequence:
            _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)

        # We'll offload the last model manually.
        self.final_offload_hook = hook

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(

        self,

        prompt: Union[str, List[str]] = None,

        audio_length_in_s: Optional[float] = None,

        num_inference_steps: int = 200,

        guidance_scale: float = 2.0,

        negative_prompt: Optional[Union[str, List[str]]] = None,

        num_waveforms_per_prompt: Optional[int] = 1,

        eta: float = 0.0,

        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,

        latents: Optional[torch.FloatTensor] = None,

        prompt_embeds: Optional[torch.FloatTensor] = None,

        negative_prompt_embeds: Optional[torch.FloatTensor] = None,

        return_dict: bool = True,

        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,

        callback_steps: Optional[int] = 1,

        cross_attention_kwargs: Optional[Dict[str, Any]] = None,

        output_type: Optional[str] = "np",

    ):
        r"""

        The call function to the pipeline for generation.



        Args:

            prompt (`str` or `List[str]`, *optional*):

                The prompt or prompts to guide audio generation. If not defined, you need to pass `prompt_embeds`.

            audio_length_in_s (`int`, *optional*, defaults to 10.24):

                The length of the generated audio sample in seconds.

            num_inference_steps (`int`, *optional*, defaults to 200):

                The number of denoising steps. More denoising steps usually lead to a higher quality audio at the

                expense of slower inference.

            guidance_scale (`float`, *optional*, defaults to 2.0):

                A higher guidance scale value encourages the model to generate audio that is closely linked to the text

                `prompt` at the expense of lower sound quality. Guidance scale is enabled when `guidance_scale > 1`.

            negative_prompt (`str` or `List[str]`, *optional*):

                The prompt or prompts to guide what to not include in audio generation. If not defined, you need to

                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).

            num_waveforms_per_prompt (`int`, *optional*, defaults to 1):

                The number of waveforms to generate per prompt. If `num_waveforms_per_prompt > 1`, the text encoding

                model is a joint text-audio model ([`~transformers.ClapModel`]), and the tokenizer is a

                `[~transformers.ClapProcessor]`, then automatic scoring will be performed between the generated outputs

                and the input text. This scoring ranks the generated waveforms based on their cosine similarity to text

                input in the joint text-audio embedding space.

            eta (`float`, *optional*, defaults to 0.0):

                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies

                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.

            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):

                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make

                generation deterministic.

            latents (`torch.FloatTensor`, *optional*):

                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image

                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents

                tensor is generated by sampling using the supplied random `generator`.

            prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not

                provided, text embeddings are generated from the `prompt` input argument.

            negative_prompt_embeds (`torch.FloatTensor`, *optional*):

                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If

                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.

            return_dict (`bool`, *optional*, defaults to `True`):

                Whether or not to return a [`~pipelines.AudioPipelineOutput`] instead of a plain tuple.

            callback (`Callable`, *optional*):

                A function that calls every `callback_steps` steps during inference. The function is called with the

                following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.

            callback_steps (`int`, *optional*, defaults to 1):

                The frequency at which the `callback` function is called. If not specified, the callback is called at

                every step.

            cross_attention_kwargs (`dict`, *optional*):

                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in

                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).

            output_type (`str`, *optional*, defaults to `"np"`):

                The output format of the generated audio. Choose between `"np"` to return a NumPy `np.ndarray` or

                `"pt"` to return a PyTorch `torch.Tensor` object. Set to `"latent"` to return the latent diffusion

                model (LDM) output.



        Examples:



        Returns:

            [`~pipelines.AudioPipelineOutput`] or `tuple`:

                If `return_dict` is `True`, [`~pipelines.AudioPipelineOutput`] is returned, otherwise a `tuple` is

                returned where the first element is a list with the generated audio.

        """
        # 0. Convert audio input length from seconds to spectrogram height
        vocoder_upsample_factor = np.prod(self.vocoder.config.upsample_rates) / self.vocoder.config.sampling_rate

        if audio_length_in_s is None:
            audio_length_in_s = self.unet.config.sample_size * self.vae_scale_factor * vocoder_upsample_factor

        height = int(audio_length_in_s / vocoder_upsample_factor)

        original_waveform_length = int(audio_length_in_s * self.vocoder.config.sampling_rate)
        if height % self.vae_scale_factor != 0:
            height = int(np.ceil(height / self.vae_scale_factor)) * self.vae_scale_factor
            logger.info(
                f"Audio length in seconds {audio_length_in_s} is increased to {height * vocoder_upsample_factor} "
                f"so that it can be handled by the model. It will be cut to {audio_length_in_s} after the "
                f"denoising process."
            )

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            audio_length_in_s,
            vocoder_upsample_factor,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
        )

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Encode input prompt
        prompt_embeds = self._encode_prompt(
            prompt,
            device,
            num_waveforms_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
        )

        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_waveforms_per_prompt,
            num_channels_latents,
            height,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=None,
                    class_labels=prompt_embeds,
                    cross_attention_kwargs=cross_attention_kwargs,
                    return_dict=False,
                )[0]

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

        self.maybe_free_model_hooks()

        # 8. Post-processing
        if not output_type == "latent":
            latents = 1 / self.vae.config.scaling_factor * latents
            mel_spectrogram = self.vae.decode(latents).sample
        else:
            return AudioPipelineOutput(audios=latents)

        audio = self.mel_spectrogram_to_waveform(mel_spectrogram)

        audio = audio[:, :original_waveform_length]

        # 9. Automatic scoring
        if num_waveforms_per_prompt > 1 and prompt is not None:
            audio = self.score_waveforms(
                text=prompt,
                audio=audio,
                num_waveforms_per_prompt=num_waveforms_per_prompt,
                device=device,
                dtype=prompt_embeds.dtype,
            )

        if output_type == "np":
            audio = audio.numpy()

        if not return_dict:
            return (audio,)

        return AudioPipelineOutput(audios=audio)