Spaces:
Running
on
Zero
Running
on
Zero
File size: 25,763 Bytes
0324143 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 |
# Copyright 2022 The Music Spectrogram Diffusion Authors.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import dataclasses
import math
import os
from typing import Any, Callable, List, Mapping, MutableMapping, Optional, Sequence, Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
from ....utils import is_note_seq_available
from .pipeline_spectrogram_diffusion import TARGET_FEATURE_LENGTH
if is_note_seq_available():
import note_seq
else:
raise ImportError("Please install note-seq via `pip install note-seq`")
INPUT_FEATURE_LENGTH = 2048
SAMPLE_RATE = 16000
HOP_SIZE = 320
FRAME_RATE = int(SAMPLE_RATE // HOP_SIZE)
DEFAULT_STEPS_PER_SECOND = 100
DEFAULT_MAX_SHIFT_SECONDS = 10
DEFAULT_NUM_VELOCITY_BINS = 1
SLAKH_CLASS_PROGRAMS = {
"Acoustic Piano": 0,
"Electric Piano": 4,
"Chromatic Percussion": 8,
"Organ": 16,
"Acoustic Guitar": 24,
"Clean Electric Guitar": 26,
"Distorted Electric Guitar": 29,
"Acoustic Bass": 32,
"Electric Bass": 33,
"Violin": 40,
"Viola": 41,
"Cello": 42,
"Contrabass": 43,
"Orchestral Harp": 46,
"Timpani": 47,
"String Ensemble": 48,
"Synth Strings": 50,
"Choir and Voice": 52,
"Orchestral Hit": 55,
"Trumpet": 56,
"Trombone": 57,
"Tuba": 58,
"French Horn": 60,
"Brass Section": 61,
"Soprano/Alto Sax": 64,
"Tenor Sax": 66,
"Baritone Sax": 67,
"Oboe": 68,
"English Horn": 69,
"Bassoon": 70,
"Clarinet": 71,
"Pipe": 73,
"Synth Lead": 80,
"Synth Pad": 88,
}
@dataclasses.dataclass
class NoteRepresentationConfig:
"""Configuration note representations."""
onsets_only: bool
include_ties: bool
@dataclasses.dataclass
class NoteEventData:
pitch: int
velocity: Optional[int] = None
program: Optional[int] = None
is_drum: Optional[bool] = None
instrument: Optional[int] = None
@dataclasses.dataclass
class NoteEncodingState:
"""Encoding state for note transcription, keeping track of active pitches."""
# velocity bin for active pitches and programs
active_pitches: MutableMapping[Tuple[int, int], int] = dataclasses.field(default_factory=dict)
@dataclasses.dataclass
class EventRange:
type: str
min_value: int
max_value: int
@dataclasses.dataclass
class Event:
type: str
value: int
class Tokenizer:
def __init__(self, regular_ids: int):
# The special tokens: 0=PAD, 1=EOS, and 2=UNK
self._num_special_tokens = 3
self._num_regular_tokens = regular_ids
def encode(self, token_ids):
encoded = []
for token_id in token_ids:
if not 0 <= token_id < self._num_regular_tokens:
raise ValueError(
f"token_id {token_id} does not fall within valid range of [0, {self._num_regular_tokens})"
)
encoded.append(token_id + self._num_special_tokens)
# Add EOS token
encoded.append(1)
# Pad to till INPUT_FEATURE_LENGTH
encoded = encoded + [0] * (INPUT_FEATURE_LENGTH - len(encoded))
return encoded
class Codec:
"""Encode and decode events.
Useful for declaring what certain ranges of a vocabulary should be used for. This is intended to be used from
Python before encoding or after decoding with GenericTokenVocabulary. This class is more lightweight and does not
include things like EOS or UNK token handling.
To ensure that 'shift' events are always the first block of the vocab and start at 0, that event type is required
and specified separately.
"""
def __init__(self, max_shift_steps: int, steps_per_second: float, event_ranges: List[EventRange]):
"""Define Codec.
Args:
max_shift_steps: Maximum number of shift steps that can be encoded.
steps_per_second: Shift steps will be interpreted as having a duration of
1 / steps_per_second.
event_ranges: Other supported event types and their ranges.
"""
self.steps_per_second = steps_per_second
self._shift_range = EventRange(type="shift", min_value=0, max_value=max_shift_steps)
self._event_ranges = [self._shift_range] + event_ranges
# Ensure all event types have unique names.
assert len(self._event_ranges) == len({er.type for er in self._event_ranges})
@property
def num_classes(self) -> int:
return sum(er.max_value - er.min_value + 1 for er in self._event_ranges)
# The next couple methods are simplified special case methods just for shift
# events that are intended to be used from within autograph functions.
def is_shift_event_index(self, index: int) -> bool:
return (self._shift_range.min_value <= index) and (index <= self._shift_range.max_value)
@property
def max_shift_steps(self) -> int:
return self._shift_range.max_value
def encode_event(self, event: Event) -> int:
"""Encode an event to an index."""
offset = 0
for er in self._event_ranges:
if event.type == er.type:
if not er.min_value <= event.value <= er.max_value:
raise ValueError(
f"Event value {event.value} is not within valid range "
f"[{er.min_value}, {er.max_value}] for type {event.type}"
)
return offset + event.value - er.min_value
offset += er.max_value - er.min_value + 1
raise ValueError(f"Unknown event type: {event.type}")
def event_type_range(self, event_type: str) -> Tuple[int, int]:
"""Return [min_id, max_id] for an event type."""
offset = 0
for er in self._event_ranges:
if event_type == er.type:
return offset, offset + (er.max_value - er.min_value)
offset += er.max_value - er.min_value + 1
raise ValueError(f"Unknown event type: {event_type}")
def decode_event_index(self, index: int) -> Event:
"""Decode an event index to an Event."""
offset = 0
for er in self._event_ranges:
if offset <= index <= offset + er.max_value - er.min_value:
return Event(type=er.type, value=er.min_value + index - offset)
offset += er.max_value - er.min_value + 1
raise ValueError(f"Unknown event index: {index}")
@dataclasses.dataclass
class ProgramGranularity:
# both tokens_map_fn and program_map_fn should be idempotent
tokens_map_fn: Callable[[Sequence[int], Codec], Sequence[int]]
program_map_fn: Callable[[int], int]
def drop_programs(tokens, codec: Codec):
"""Drops program change events from a token sequence."""
min_program_id, max_program_id = codec.event_type_range("program")
return tokens[(tokens < min_program_id) | (tokens > max_program_id)]
def programs_to_midi_classes(tokens, codec):
"""Modifies program events to be the first program in the MIDI class."""
min_program_id, max_program_id = codec.event_type_range("program")
is_program = (tokens >= min_program_id) & (tokens <= max_program_id)
return np.where(is_program, min_program_id + 8 * ((tokens - min_program_id) // 8), tokens)
PROGRAM_GRANULARITIES = {
# "flat" granularity; drop program change tokens and set NoteSequence
# programs to zero
"flat": ProgramGranularity(tokens_map_fn=drop_programs, program_map_fn=lambda program: 0),
# map each program to the first program in its MIDI class
"midi_class": ProgramGranularity(
tokens_map_fn=programs_to_midi_classes, program_map_fn=lambda program: 8 * (program // 8)
),
# leave programs as is
"full": ProgramGranularity(tokens_map_fn=lambda tokens, codec: tokens, program_map_fn=lambda program: program),
}
def frame(signal, frame_length, frame_step, pad_end=False, pad_value=0, axis=-1):
"""
equivalent of tf.signal.frame
"""
signal_length = signal.shape[axis]
if pad_end:
frames_overlap = frame_length - frame_step
rest_samples = np.abs(signal_length - frames_overlap) % np.abs(frame_length - frames_overlap)
pad_size = int(frame_length - rest_samples)
if pad_size != 0:
pad_axis = [0] * signal.ndim
pad_axis[axis] = pad_size
signal = F.pad(signal, pad_axis, "constant", pad_value)
frames = signal.unfold(axis, frame_length, frame_step)
return frames
def program_to_slakh_program(program):
# this is done very hackily, probably should use a custom mapping
for slakh_program in sorted(SLAKH_CLASS_PROGRAMS.values(), reverse=True):
if program >= slakh_program:
return slakh_program
def audio_to_frames(
samples,
hop_size: int,
frame_rate: int,
) -> Tuple[Sequence[Sequence[int]], torch.Tensor]:
"""Convert audio samples to non-overlapping frames and frame times."""
frame_size = hop_size
samples = np.pad(samples, [0, frame_size - len(samples) % frame_size], mode="constant")
# Split audio into frames.
frames = frame(
torch.Tensor(samples).unsqueeze(0),
frame_length=frame_size,
frame_step=frame_size,
pad_end=False, # TODO check why its off by 1 here when True
)
num_frames = len(samples) // frame_size
times = np.arange(num_frames) / frame_rate
return frames, times
def note_sequence_to_onsets_and_offsets_and_programs(
ns: note_seq.NoteSequence,
) -> Tuple[Sequence[float], Sequence[NoteEventData]]:
"""Extract onset & offset times and pitches & programs from a NoteSequence.
The onset & offset times will not necessarily be in sorted order.
Args:
ns: NoteSequence from which to extract onsets and offsets.
Returns:
times: A list of note onset and offset times. values: A list of NoteEventData objects where velocity is zero for
note
offsets.
"""
# Sort by program and pitch and put offsets before onsets as a tiebreaker for
# subsequent stable sort.
notes = sorted(ns.notes, key=lambda note: (note.is_drum, note.program, note.pitch))
times = [note.end_time for note in notes if not note.is_drum] + [note.start_time for note in notes]
values = [
NoteEventData(pitch=note.pitch, velocity=0, program=note.program, is_drum=False)
for note in notes
if not note.is_drum
] + [
NoteEventData(pitch=note.pitch, velocity=note.velocity, program=note.program, is_drum=note.is_drum)
for note in notes
]
return times, values
def num_velocity_bins_from_codec(codec: Codec):
"""Get number of velocity bins from event codec."""
lo, hi = codec.event_type_range("velocity")
return hi - lo
# segment an array into segments of length n
def segment(a, n):
return [a[i : i + n] for i in range(0, len(a), n)]
def velocity_to_bin(velocity, num_velocity_bins):
if velocity == 0:
return 0
else:
return math.ceil(num_velocity_bins * velocity / note_seq.MAX_MIDI_VELOCITY)
def note_event_data_to_events(
state: Optional[NoteEncodingState],
value: NoteEventData,
codec: Codec,
) -> Sequence[Event]:
"""Convert note event data to a sequence of events."""
if value.velocity is None:
# onsets only, no program or velocity
return [Event("pitch", value.pitch)]
else:
num_velocity_bins = num_velocity_bins_from_codec(codec)
velocity_bin = velocity_to_bin(value.velocity, num_velocity_bins)
if value.program is None:
# onsets + offsets + velocities only, no programs
if state is not None:
state.active_pitches[(value.pitch, 0)] = velocity_bin
return [Event("velocity", velocity_bin), Event("pitch", value.pitch)]
else:
if value.is_drum:
# drum events use a separate vocabulary
return [Event("velocity", velocity_bin), Event("drum", value.pitch)]
else:
# program + velocity + pitch
if state is not None:
state.active_pitches[(value.pitch, value.program)] = velocity_bin
return [
Event("program", value.program),
Event("velocity", velocity_bin),
Event("pitch", value.pitch),
]
def note_encoding_state_to_events(state: NoteEncodingState) -> Sequence[Event]:
"""Output program and pitch events for active notes plus a final tie event."""
events = []
for pitch, program in sorted(state.active_pitches.keys(), key=lambda k: k[::-1]):
if state.active_pitches[(pitch, program)]:
events += [Event("program", program), Event("pitch", pitch)]
events.append(Event("tie", 0))
return events
def encode_and_index_events(
state, event_times, event_values, codec, frame_times, encode_event_fn, encoding_state_to_events_fn=None
):
"""Encode a sequence of timed events and index to audio frame times.
Encodes time shifts as repeated single step shifts for later run length encoding.
Optionally, also encodes a sequence of "state events", keeping track of the current encoding state at each audio
frame. This can be used e.g. to prepend events representing the current state to a targets segment.
Args:
state: Initial event encoding state.
event_times: Sequence of event times.
event_values: Sequence of event values.
encode_event_fn: Function that transforms event value into a sequence of one
or more Event objects.
codec: An Codec object that maps Event objects to indices.
frame_times: Time for every audio frame.
encoding_state_to_events_fn: Function that transforms encoding state into a
sequence of one or more Event objects.
Returns:
events: Encoded events and shifts. event_start_indices: Corresponding start event index for every audio frame.
Note: one event can correspond to multiple audio indices due to sampling rate differences. This makes
splitting sequences tricky because the same event can appear at the end of one sequence and the beginning of
another.
event_end_indices: Corresponding end event index for every audio frame. Used
to ensure when slicing that one chunk ends where the next begins. Should always be true that
event_end_indices[i] = event_start_indices[i + 1].
state_events: Encoded "state" events representing the encoding state before
each event.
state_event_indices: Corresponding state event index for every audio frame.
"""
indices = np.argsort(event_times, kind="stable")
event_steps = [round(event_times[i] * codec.steps_per_second) for i in indices]
event_values = [event_values[i] for i in indices]
events = []
state_events = []
event_start_indices = []
state_event_indices = []
cur_step = 0
cur_event_idx = 0
cur_state_event_idx = 0
def fill_event_start_indices_to_cur_step():
while (
len(event_start_indices) < len(frame_times)
and frame_times[len(event_start_indices)] < cur_step / codec.steps_per_second
):
event_start_indices.append(cur_event_idx)
state_event_indices.append(cur_state_event_idx)
for event_step, event_value in zip(event_steps, event_values):
while event_step > cur_step:
events.append(codec.encode_event(Event(type="shift", value=1)))
cur_step += 1
fill_event_start_indices_to_cur_step()
cur_event_idx = len(events)
cur_state_event_idx = len(state_events)
if encoding_state_to_events_fn:
# Dump state to state events *before* processing the next event, because
# we want to capture the state prior to the occurrence of the event.
for e in encoding_state_to_events_fn(state):
state_events.append(codec.encode_event(e))
for e in encode_event_fn(state, event_value, codec):
events.append(codec.encode_event(e))
# After the last event, continue filling out the event_start_indices array.
# The inequality is not strict because if our current step lines up exactly
# with (the start of) an audio frame, we need to add an additional shift event
# to "cover" that frame.
while cur_step / codec.steps_per_second <= frame_times[-1]:
events.append(codec.encode_event(Event(type="shift", value=1)))
cur_step += 1
fill_event_start_indices_to_cur_step()
cur_event_idx = len(events)
# Now fill in event_end_indices. We need this extra array to make sure that
# when we slice events, each slice ends exactly where the subsequent slice
# begins.
event_end_indices = event_start_indices[1:] + [len(events)]
events = np.array(events).astype(np.int32)
state_events = np.array(state_events).astype(np.int32)
event_start_indices = segment(np.array(event_start_indices).astype(np.int32), TARGET_FEATURE_LENGTH)
event_end_indices = segment(np.array(event_end_indices).astype(np.int32), TARGET_FEATURE_LENGTH)
state_event_indices = segment(np.array(state_event_indices).astype(np.int32), TARGET_FEATURE_LENGTH)
outputs = []
for start_indices, end_indices, event_indices in zip(event_start_indices, event_end_indices, state_event_indices):
outputs.append(
{
"inputs": events,
"event_start_indices": start_indices,
"event_end_indices": end_indices,
"state_events": state_events,
"state_event_indices": event_indices,
}
)
return outputs
def extract_sequence_with_indices(features, state_events_end_token=None, feature_key="inputs"):
"""Extract target sequence corresponding to audio token segment."""
features = features.copy()
start_idx = features["event_start_indices"][0]
end_idx = features["event_end_indices"][-1]
features[feature_key] = features[feature_key][start_idx:end_idx]
if state_events_end_token is not None:
# Extract the state events corresponding to the audio start token, and
# prepend them to the targets array.
state_event_start_idx = features["state_event_indices"][0]
state_event_end_idx = state_event_start_idx + 1
while features["state_events"][state_event_end_idx - 1] != state_events_end_token:
state_event_end_idx += 1
features[feature_key] = np.concatenate(
[
features["state_events"][state_event_start_idx:state_event_end_idx],
features[feature_key],
],
axis=0,
)
return features
def map_midi_programs(
feature, codec: Codec, granularity_type: str = "full", feature_key: str = "inputs"
) -> Mapping[str, Any]:
"""Apply MIDI program map to token sequences."""
granularity = PROGRAM_GRANULARITIES[granularity_type]
feature[feature_key] = granularity.tokens_map_fn(feature[feature_key], codec)
return feature
def run_length_encode_shifts_fn(
features,
codec: Codec,
feature_key: str = "inputs",
state_change_event_types: Sequence[str] = (),
) -> Callable[[Mapping[str, Any]], Mapping[str, Any]]:
"""Return a function that run-length encodes shifts for a given codec.
Args:
codec: The Codec to use for shift events.
feature_key: The feature key for which to run-length encode shifts.
state_change_event_types: A list of event types that represent state
changes; tokens corresponding to these event types will be interpreted as state changes and redundant ones
will be removed.
Returns:
A preprocessing function that run-length encodes single-step shifts.
"""
state_change_event_ranges = [codec.event_type_range(event_type) for event_type in state_change_event_types]
def run_length_encode_shifts(features: MutableMapping[str, Any]) -> Mapping[str, Any]:
"""Combine leading/interior shifts, trim trailing shifts.
Args:
features: Dict of features to process.
Returns:
A dict of features.
"""
events = features[feature_key]
shift_steps = 0
total_shift_steps = 0
output = np.array([], dtype=np.int32)
current_state = np.zeros(len(state_change_event_ranges), dtype=np.int32)
for event in events:
if codec.is_shift_event_index(event):
shift_steps += 1
total_shift_steps += 1
else:
# If this event is a state change and has the same value as the current
# state, we can skip it entirely.
is_redundant = False
for i, (min_index, max_index) in enumerate(state_change_event_ranges):
if (min_index <= event) and (event <= max_index):
if current_state[i] == event:
is_redundant = True
current_state[i] = event
if is_redundant:
continue
# Once we've reached a non-shift event, RLE all previous shift events
# before outputting the non-shift event.
if shift_steps > 0:
shift_steps = total_shift_steps
while shift_steps > 0:
output_steps = np.minimum(codec.max_shift_steps, shift_steps)
output = np.concatenate([output, [output_steps]], axis=0)
shift_steps -= output_steps
output = np.concatenate([output, [event]], axis=0)
features[feature_key] = output
return features
return run_length_encode_shifts(features)
def note_representation_processor_chain(features, codec: Codec, note_representation_config: NoteRepresentationConfig):
tie_token = codec.encode_event(Event("tie", 0))
state_events_end_token = tie_token if note_representation_config.include_ties else None
features = extract_sequence_with_indices(
features, state_events_end_token=state_events_end_token, feature_key="inputs"
)
features = map_midi_programs(features, codec)
features = run_length_encode_shifts_fn(features, codec, state_change_event_types=["velocity", "program"])
return features
class MidiProcessor:
def __init__(self):
self.codec = Codec(
max_shift_steps=DEFAULT_MAX_SHIFT_SECONDS * DEFAULT_STEPS_PER_SECOND,
steps_per_second=DEFAULT_STEPS_PER_SECOND,
event_ranges=[
EventRange("pitch", note_seq.MIN_MIDI_PITCH, note_seq.MAX_MIDI_PITCH),
EventRange("velocity", 0, DEFAULT_NUM_VELOCITY_BINS),
EventRange("tie", 0, 0),
EventRange("program", note_seq.MIN_MIDI_PROGRAM, note_seq.MAX_MIDI_PROGRAM),
EventRange("drum", note_seq.MIN_MIDI_PITCH, note_seq.MAX_MIDI_PITCH),
],
)
self.tokenizer = Tokenizer(self.codec.num_classes)
self.note_representation_config = NoteRepresentationConfig(onsets_only=False, include_ties=True)
def __call__(self, midi: Union[bytes, os.PathLike, str]):
if not isinstance(midi, bytes):
with open(midi, "rb") as f:
midi = f.read()
ns = note_seq.midi_to_note_sequence(midi)
ns_sus = note_seq.apply_sustain_control_changes(ns)
for note in ns_sus.notes:
if not note.is_drum:
note.program = program_to_slakh_program(note.program)
samples = np.zeros(int(ns_sus.total_time * SAMPLE_RATE))
_, frame_times = audio_to_frames(samples, HOP_SIZE, FRAME_RATE)
times, values = note_sequence_to_onsets_and_offsets_and_programs(ns_sus)
events = encode_and_index_events(
state=NoteEncodingState(),
event_times=times,
event_values=values,
frame_times=frame_times,
codec=self.codec,
encode_event_fn=note_event_data_to_events,
encoding_state_to_events_fn=note_encoding_state_to_events,
)
events = [
note_representation_processor_chain(event, self.codec, self.note_representation_config) for event in events
]
input_tokens = [self.tokenizer.encode(event["inputs"]) for event in events]
return input_tokens
|