File size: 27,795 Bytes
0324143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Optional, Tuple, Union

import torch
import torch.nn.functional as F
from torch import nn

from ..activations import get_activation
from ..resnet import Downsample1D, ResidualTemporalBlock1D, Upsample1D, rearrange_dims


class DownResnetBlock1D(nn.Module):
    def __init__(

        self,

        in_channels: int,

        out_channels: Optional[int] = None,

        num_layers: int = 1,

        conv_shortcut: bool = False,

        temb_channels: int = 32,

        groups: int = 32,

        groups_out: Optional[int] = None,

        non_linearity: Optional[str] = None,

        time_embedding_norm: str = "default",

        output_scale_factor: float = 1.0,

        add_downsample: bool = True,

    ):
        super().__init__()
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut
        self.time_embedding_norm = time_embedding_norm
        self.add_downsample = add_downsample
        self.output_scale_factor = output_scale_factor

        if groups_out is None:
            groups_out = groups

        # there will always be at least one resnet
        resnets = [ResidualTemporalBlock1D(in_channels, out_channels, embed_dim=temb_channels)]

        for _ in range(num_layers):
            resnets.append(ResidualTemporalBlock1D(out_channels, out_channels, embed_dim=temb_channels))

        self.resnets = nn.ModuleList(resnets)

        if non_linearity is None:
            self.nonlinearity = None
        else:
            self.nonlinearity = get_activation(non_linearity)

        self.downsample = None
        if add_downsample:
            self.downsample = Downsample1D(out_channels, use_conv=True, padding=1)

    def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
        output_states = ()

        hidden_states = self.resnets[0](hidden_states, temb)
        for resnet in self.resnets[1:]:
            hidden_states = resnet(hidden_states, temb)

        output_states += (hidden_states,)

        if self.nonlinearity is not None:
            hidden_states = self.nonlinearity(hidden_states)

        if self.downsample is not None:
            hidden_states = self.downsample(hidden_states)

        return hidden_states, output_states


class UpResnetBlock1D(nn.Module):
    def __init__(

        self,

        in_channels: int,

        out_channels: Optional[int] = None,

        num_layers: int = 1,

        temb_channels: int = 32,

        groups: int = 32,

        groups_out: Optional[int] = None,

        non_linearity: Optional[str] = None,

        time_embedding_norm: str = "default",

        output_scale_factor: float = 1.0,

        add_upsample: bool = True,

    ):
        super().__init__()
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.time_embedding_norm = time_embedding_norm
        self.add_upsample = add_upsample
        self.output_scale_factor = output_scale_factor

        if groups_out is None:
            groups_out = groups

        # there will always be at least one resnet
        resnets = [ResidualTemporalBlock1D(2 * in_channels, out_channels, embed_dim=temb_channels)]

        for _ in range(num_layers):
            resnets.append(ResidualTemporalBlock1D(out_channels, out_channels, embed_dim=temb_channels))

        self.resnets = nn.ModuleList(resnets)

        if non_linearity is None:
            self.nonlinearity = None
        else:
            self.nonlinearity = get_activation(non_linearity)

        self.upsample = None
        if add_upsample:
            self.upsample = Upsample1D(out_channels, use_conv_transpose=True)

    def forward(

        self,

        hidden_states: torch.FloatTensor,

        res_hidden_states_tuple: Optional[Tuple[torch.FloatTensor, ...]] = None,

        temb: Optional[torch.FloatTensor] = None,

    ) -> torch.FloatTensor:
        if res_hidden_states_tuple is not None:
            res_hidden_states = res_hidden_states_tuple[-1]
            hidden_states = torch.cat((hidden_states, res_hidden_states), dim=1)

        hidden_states = self.resnets[0](hidden_states, temb)
        for resnet in self.resnets[1:]:
            hidden_states = resnet(hidden_states, temb)

        if self.nonlinearity is not None:
            hidden_states = self.nonlinearity(hidden_states)

        if self.upsample is not None:
            hidden_states = self.upsample(hidden_states)

        return hidden_states


class ValueFunctionMidBlock1D(nn.Module):
    def __init__(self, in_channels: int, out_channels: int, embed_dim: int):
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.embed_dim = embed_dim

        self.res1 = ResidualTemporalBlock1D(in_channels, in_channels // 2, embed_dim=embed_dim)
        self.down1 = Downsample1D(out_channels // 2, use_conv=True)
        self.res2 = ResidualTemporalBlock1D(in_channels // 2, in_channels // 4, embed_dim=embed_dim)
        self.down2 = Downsample1D(out_channels // 4, use_conv=True)

    def forward(self, x: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
        x = self.res1(x, temb)
        x = self.down1(x)
        x = self.res2(x, temb)
        x = self.down2(x)
        return x


class MidResTemporalBlock1D(nn.Module):
    def __init__(

        self,

        in_channels: int,

        out_channels: int,

        embed_dim: int,

        num_layers: int = 1,

        add_downsample: bool = False,

        add_upsample: bool = False,

        non_linearity: Optional[str] = None,

    ):
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.add_downsample = add_downsample

        # there will always be at least one resnet
        resnets = [ResidualTemporalBlock1D(in_channels, out_channels, embed_dim=embed_dim)]

        for _ in range(num_layers):
            resnets.append(ResidualTemporalBlock1D(out_channels, out_channels, embed_dim=embed_dim))

        self.resnets = nn.ModuleList(resnets)

        if non_linearity is None:
            self.nonlinearity = None
        else:
            self.nonlinearity = get_activation(non_linearity)

        self.upsample = None
        if add_upsample:
            self.upsample = Downsample1D(out_channels, use_conv=True)

        self.downsample = None
        if add_downsample:
            self.downsample = Downsample1D(out_channels, use_conv=True)

        if self.upsample and self.downsample:
            raise ValueError("Block cannot downsample and upsample")

    def forward(self, hidden_states: torch.FloatTensor, temb: torch.FloatTensor) -> torch.FloatTensor:
        hidden_states = self.resnets[0](hidden_states, temb)
        for resnet in self.resnets[1:]:
            hidden_states = resnet(hidden_states, temb)

        if self.upsample:
            hidden_states = self.upsample(hidden_states)
        if self.downsample:
            self.downsample = self.downsample(hidden_states)

        return hidden_states


class OutConv1DBlock(nn.Module):
    def __init__(self, num_groups_out: int, out_channels: int, embed_dim: int, act_fn: str):
        super().__init__()
        self.final_conv1d_1 = nn.Conv1d(embed_dim, embed_dim, 5, padding=2)
        self.final_conv1d_gn = nn.GroupNorm(num_groups_out, embed_dim)
        self.final_conv1d_act = get_activation(act_fn)
        self.final_conv1d_2 = nn.Conv1d(embed_dim, out_channels, 1)

    def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
        hidden_states = self.final_conv1d_1(hidden_states)
        hidden_states = rearrange_dims(hidden_states)
        hidden_states = self.final_conv1d_gn(hidden_states)
        hidden_states = rearrange_dims(hidden_states)
        hidden_states = self.final_conv1d_act(hidden_states)
        hidden_states = self.final_conv1d_2(hidden_states)
        return hidden_states


class OutValueFunctionBlock(nn.Module):
    def __init__(self, fc_dim: int, embed_dim: int, act_fn: str = "mish"):
        super().__init__()
        self.final_block = nn.ModuleList(
            [
                nn.Linear(fc_dim + embed_dim, fc_dim // 2),
                get_activation(act_fn),
                nn.Linear(fc_dim // 2, 1),
            ]
        )

    def forward(self, hidden_states: torch.FloatTensor, temb: torch.FloatTensor) -> torch.FloatTensor:
        hidden_states = hidden_states.view(hidden_states.shape[0], -1)
        hidden_states = torch.cat((hidden_states, temb), dim=-1)
        for layer in self.final_block:
            hidden_states = layer(hidden_states)

        return hidden_states


_kernels = {
    "linear": [1 / 8, 3 / 8, 3 / 8, 1 / 8],
    "cubic": [-0.01171875, -0.03515625, 0.11328125, 0.43359375, 0.43359375, 0.11328125, -0.03515625, -0.01171875],
    "lanczos3": [
        0.003689131001010537,
        0.015056144446134567,
        -0.03399861603975296,
        -0.066637322306633,
        0.13550527393817902,
        0.44638532400131226,
        0.44638532400131226,
        0.13550527393817902,
        -0.066637322306633,
        -0.03399861603975296,
        0.015056144446134567,
        0.003689131001010537,
    ],
}


class Downsample1d(nn.Module):
    def __init__(self, kernel: str = "linear", pad_mode: str = "reflect"):
        super().__init__()
        self.pad_mode = pad_mode
        kernel_1d = torch.tensor(_kernels[kernel])
        self.pad = kernel_1d.shape[0] // 2 - 1
        self.register_buffer("kernel", kernel_1d)

    def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
        hidden_states = F.pad(hidden_states, (self.pad,) * 2, self.pad_mode)
        weight = hidden_states.new_zeros([hidden_states.shape[1], hidden_states.shape[1], self.kernel.shape[0]])
        indices = torch.arange(hidden_states.shape[1], device=hidden_states.device)
        kernel = self.kernel.to(weight)[None, :].expand(hidden_states.shape[1], -1)
        weight[indices, indices] = kernel
        return F.conv1d(hidden_states, weight, stride=2)


class Upsample1d(nn.Module):
    def __init__(self, kernel: str = "linear", pad_mode: str = "reflect"):
        super().__init__()
        self.pad_mode = pad_mode
        kernel_1d = torch.tensor(_kernels[kernel]) * 2
        self.pad = kernel_1d.shape[0] // 2 - 1
        self.register_buffer("kernel", kernel_1d)

    def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
        hidden_states = F.pad(hidden_states, ((self.pad + 1) // 2,) * 2, self.pad_mode)
        weight = hidden_states.new_zeros([hidden_states.shape[1], hidden_states.shape[1], self.kernel.shape[0]])
        indices = torch.arange(hidden_states.shape[1], device=hidden_states.device)
        kernel = self.kernel.to(weight)[None, :].expand(hidden_states.shape[1], -1)
        weight[indices, indices] = kernel
        return F.conv_transpose1d(hidden_states, weight, stride=2, padding=self.pad * 2 + 1)


class SelfAttention1d(nn.Module):
    def __init__(self, in_channels: int, n_head: int = 1, dropout_rate: float = 0.0):
        super().__init__()
        self.channels = in_channels
        self.group_norm = nn.GroupNorm(1, num_channels=in_channels)
        self.num_heads = n_head

        self.query = nn.Linear(self.channels, self.channels)
        self.key = nn.Linear(self.channels, self.channels)
        self.value = nn.Linear(self.channels, self.channels)

        self.proj_attn = nn.Linear(self.channels, self.channels, bias=True)

        self.dropout = nn.Dropout(dropout_rate, inplace=True)

    def transpose_for_scores(self, projection: torch.Tensor) -> torch.Tensor:
        new_projection_shape = projection.size()[:-1] + (self.num_heads, -1)
        # move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D)
        new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3)
        return new_projection

    def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
        residual = hidden_states
        batch, channel_dim, seq = hidden_states.shape

        hidden_states = self.group_norm(hidden_states)
        hidden_states = hidden_states.transpose(1, 2)

        query_proj = self.query(hidden_states)
        key_proj = self.key(hidden_states)
        value_proj = self.value(hidden_states)

        query_states = self.transpose_for_scores(query_proj)
        key_states = self.transpose_for_scores(key_proj)
        value_states = self.transpose_for_scores(value_proj)

        scale = 1 / math.sqrt(math.sqrt(key_states.shape[-1]))

        attention_scores = torch.matmul(query_states * scale, key_states.transpose(-1, -2) * scale)
        attention_probs = torch.softmax(attention_scores, dim=-1)

        # compute attention output
        hidden_states = torch.matmul(attention_probs, value_states)

        hidden_states = hidden_states.permute(0, 2, 1, 3).contiguous()
        new_hidden_states_shape = hidden_states.size()[:-2] + (self.channels,)
        hidden_states = hidden_states.view(new_hidden_states_shape)

        # compute next hidden_states
        hidden_states = self.proj_attn(hidden_states)
        hidden_states = hidden_states.transpose(1, 2)
        hidden_states = self.dropout(hidden_states)

        output = hidden_states + residual

        return output


class ResConvBlock(nn.Module):
    def __init__(self, in_channels: int, mid_channels: int, out_channels: int, is_last: bool = False):
        super().__init__()
        self.is_last = is_last
        self.has_conv_skip = in_channels != out_channels

        if self.has_conv_skip:
            self.conv_skip = nn.Conv1d(in_channels, out_channels, 1, bias=False)

        self.conv_1 = nn.Conv1d(in_channels, mid_channels, 5, padding=2)
        self.group_norm_1 = nn.GroupNorm(1, mid_channels)
        self.gelu_1 = nn.GELU()
        self.conv_2 = nn.Conv1d(mid_channels, out_channels, 5, padding=2)

        if not self.is_last:
            self.group_norm_2 = nn.GroupNorm(1, out_channels)
            self.gelu_2 = nn.GELU()

    def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
        residual = self.conv_skip(hidden_states) if self.has_conv_skip else hidden_states

        hidden_states = self.conv_1(hidden_states)
        hidden_states = self.group_norm_1(hidden_states)
        hidden_states = self.gelu_1(hidden_states)
        hidden_states = self.conv_2(hidden_states)

        if not self.is_last:
            hidden_states = self.group_norm_2(hidden_states)
            hidden_states = self.gelu_2(hidden_states)

        output = hidden_states + residual
        return output


class UNetMidBlock1D(nn.Module):
    def __init__(self, mid_channels: int, in_channels: int, out_channels: Optional[int] = None):
        super().__init__()

        out_channels = in_channels if out_channels is None else out_channels

        # there is always at least one resnet
        self.down = Downsample1d("cubic")
        resnets = [
            ResConvBlock(in_channels, mid_channels, mid_channels),
            ResConvBlock(mid_channels, mid_channels, mid_channels),
            ResConvBlock(mid_channels, mid_channels, mid_channels),
            ResConvBlock(mid_channels, mid_channels, mid_channels),
            ResConvBlock(mid_channels, mid_channels, mid_channels),
            ResConvBlock(mid_channels, mid_channels, out_channels),
        ]
        attentions = [
            SelfAttention1d(mid_channels, mid_channels // 32),
            SelfAttention1d(mid_channels, mid_channels // 32),
            SelfAttention1d(mid_channels, mid_channels // 32),
            SelfAttention1d(mid_channels, mid_channels // 32),
            SelfAttention1d(mid_channels, mid_channels // 32),
            SelfAttention1d(out_channels, out_channels // 32),
        ]
        self.up = Upsample1d(kernel="cubic")

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

    def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
        hidden_states = self.down(hidden_states)
        for attn, resnet in zip(self.attentions, self.resnets):
            hidden_states = resnet(hidden_states)
            hidden_states = attn(hidden_states)

        hidden_states = self.up(hidden_states)

        return hidden_states


class AttnDownBlock1D(nn.Module):
    def __init__(self, out_channels: int, in_channels: int, mid_channels: Optional[int] = None):
        super().__init__()
        mid_channels = out_channels if mid_channels is None else mid_channels

        self.down = Downsample1d("cubic")
        resnets = [
            ResConvBlock(in_channels, mid_channels, mid_channels),
            ResConvBlock(mid_channels, mid_channels, mid_channels),
            ResConvBlock(mid_channels, mid_channels, out_channels),
        ]
        attentions = [
            SelfAttention1d(mid_channels, mid_channels // 32),
            SelfAttention1d(mid_channels, mid_channels // 32),
            SelfAttention1d(out_channels, out_channels // 32),
        ]

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

    def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
        hidden_states = self.down(hidden_states)

        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states)
            hidden_states = attn(hidden_states)

        return hidden_states, (hidden_states,)


class DownBlock1D(nn.Module):
    def __init__(self, out_channels: int, in_channels: int, mid_channels: Optional[int] = None):
        super().__init__()
        mid_channels = out_channels if mid_channels is None else mid_channels

        self.down = Downsample1d("cubic")
        resnets = [
            ResConvBlock(in_channels, mid_channels, mid_channels),
            ResConvBlock(mid_channels, mid_channels, mid_channels),
            ResConvBlock(mid_channels, mid_channels, out_channels),
        ]

        self.resnets = nn.ModuleList(resnets)

    def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
        hidden_states = self.down(hidden_states)

        for resnet in self.resnets:
            hidden_states = resnet(hidden_states)

        return hidden_states, (hidden_states,)


class DownBlock1DNoSkip(nn.Module):
    def __init__(self, out_channels: int, in_channels: int, mid_channels: Optional[int] = None):
        super().__init__()
        mid_channels = out_channels if mid_channels is None else mid_channels

        resnets = [
            ResConvBlock(in_channels, mid_channels, mid_channels),
            ResConvBlock(mid_channels, mid_channels, mid_channels),
            ResConvBlock(mid_channels, mid_channels, out_channels),
        ]

        self.resnets = nn.ModuleList(resnets)

    def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
        hidden_states = torch.cat([hidden_states, temb], dim=1)
        for resnet in self.resnets:
            hidden_states = resnet(hidden_states)

        return hidden_states, (hidden_states,)


class AttnUpBlock1D(nn.Module):
    def __init__(self, in_channels: int, out_channels: int, mid_channels: Optional[int] = None):
        super().__init__()
        mid_channels = out_channels if mid_channels is None else mid_channels

        resnets = [
            ResConvBlock(2 * in_channels, mid_channels, mid_channels),
            ResConvBlock(mid_channels, mid_channels, mid_channels),
            ResConvBlock(mid_channels, mid_channels, out_channels),
        ]
        attentions = [
            SelfAttention1d(mid_channels, mid_channels // 32),
            SelfAttention1d(mid_channels, mid_channels // 32),
            SelfAttention1d(out_channels, out_channels // 32),
        ]

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)
        self.up = Upsample1d(kernel="cubic")

    def forward(

        self,

        hidden_states: torch.FloatTensor,

        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],

        temb: Optional[torch.FloatTensor] = None,

    ) -> torch.FloatTensor:
        res_hidden_states = res_hidden_states_tuple[-1]
        hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states)
            hidden_states = attn(hidden_states)

        hidden_states = self.up(hidden_states)

        return hidden_states


class UpBlock1D(nn.Module):
    def __init__(self, in_channels: int, out_channels: int, mid_channels: Optional[int] = None):
        super().__init__()
        mid_channels = in_channels if mid_channels is None else mid_channels

        resnets = [
            ResConvBlock(2 * in_channels, mid_channels, mid_channels),
            ResConvBlock(mid_channels, mid_channels, mid_channels),
            ResConvBlock(mid_channels, mid_channels, out_channels),
        ]

        self.resnets = nn.ModuleList(resnets)
        self.up = Upsample1d(kernel="cubic")

    def forward(

        self,

        hidden_states: torch.FloatTensor,

        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],

        temb: Optional[torch.FloatTensor] = None,

    ) -> torch.FloatTensor:
        res_hidden_states = res_hidden_states_tuple[-1]
        hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

        for resnet in self.resnets:
            hidden_states = resnet(hidden_states)

        hidden_states = self.up(hidden_states)

        return hidden_states


class UpBlock1DNoSkip(nn.Module):
    def __init__(self, in_channels: int, out_channels: int, mid_channels: Optional[int] = None):
        super().__init__()
        mid_channels = in_channels if mid_channels is None else mid_channels

        resnets = [
            ResConvBlock(2 * in_channels, mid_channels, mid_channels),
            ResConvBlock(mid_channels, mid_channels, mid_channels),
            ResConvBlock(mid_channels, mid_channels, out_channels, is_last=True),
        ]

        self.resnets = nn.ModuleList(resnets)

    def forward(

        self,

        hidden_states: torch.FloatTensor,

        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],

        temb: Optional[torch.FloatTensor] = None,

    ) -> torch.FloatTensor:
        res_hidden_states = res_hidden_states_tuple[-1]
        hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

        for resnet in self.resnets:
            hidden_states = resnet(hidden_states)

        return hidden_states


DownBlockType = Union[DownResnetBlock1D, DownBlock1D, AttnDownBlock1D, DownBlock1DNoSkip]
MidBlockType = Union[MidResTemporalBlock1D, ValueFunctionMidBlock1D, UNetMidBlock1D]
OutBlockType = Union[OutConv1DBlock, OutValueFunctionBlock]
UpBlockType = Union[UpResnetBlock1D, UpBlock1D, AttnUpBlock1D, UpBlock1DNoSkip]


def get_down_block(

    down_block_type: str,

    num_layers: int,

    in_channels: int,

    out_channels: int,

    temb_channels: int,

    add_downsample: bool,

) -> DownBlockType:
    if down_block_type == "DownResnetBlock1D":
        return DownResnetBlock1D(
            in_channels=in_channels,
            num_layers=num_layers,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
        )
    elif down_block_type == "DownBlock1D":
        return DownBlock1D(out_channels=out_channels, in_channels=in_channels)
    elif down_block_type == "AttnDownBlock1D":
        return AttnDownBlock1D(out_channels=out_channels, in_channels=in_channels)
    elif down_block_type == "DownBlock1DNoSkip":
        return DownBlock1DNoSkip(out_channels=out_channels, in_channels=in_channels)
    raise ValueError(f"{down_block_type} does not exist.")


def get_up_block(

    up_block_type: str, num_layers: int, in_channels: int, out_channels: int, temb_channels: int, add_upsample: bool

) -> UpBlockType:
    if up_block_type == "UpResnetBlock1D":
        return UpResnetBlock1D(
            in_channels=in_channels,
            num_layers=num_layers,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
        )
    elif up_block_type == "UpBlock1D":
        return UpBlock1D(in_channels=in_channels, out_channels=out_channels)
    elif up_block_type == "AttnUpBlock1D":
        return AttnUpBlock1D(in_channels=in_channels, out_channels=out_channels)
    elif up_block_type == "UpBlock1DNoSkip":
        return UpBlock1DNoSkip(in_channels=in_channels, out_channels=out_channels)
    raise ValueError(f"{up_block_type} does not exist.")


def get_mid_block(

    mid_block_type: str,

    num_layers: int,

    in_channels: int,

    mid_channels: int,

    out_channels: int,

    embed_dim: int,

    add_downsample: bool,

) -> MidBlockType:
    if mid_block_type == "MidResTemporalBlock1D":
        return MidResTemporalBlock1D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            embed_dim=embed_dim,
            add_downsample=add_downsample,
        )
    elif mid_block_type == "ValueFunctionMidBlock1D":
        return ValueFunctionMidBlock1D(in_channels=in_channels, out_channels=out_channels, embed_dim=embed_dim)
    elif mid_block_type == "UNetMidBlock1D":
        return UNetMidBlock1D(in_channels=in_channels, mid_channels=mid_channels, out_channels=out_channels)
    raise ValueError(f"{mid_block_type} does not exist.")


def get_out_block(

    *, out_block_type: str, num_groups_out: int, embed_dim: int, out_channels: int, act_fn: str, fc_dim: int

) -> Optional[OutBlockType]:
    if out_block_type == "OutConv1DBlock":
        return OutConv1DBlock(num_groups_out, out_channels, embed_dim, act_fn)
    elif out_block_type == "ValueFunction":
        return OutValueFunctionBlock(fc_dim, embed_dim, act_fn)
    return None