import gradio as gr import spaces from gradio_litmodel3d import LitModel3D import os import shutil import random import uuid from datetime import datetime from diffusers import DiffusionPipeline os.environ['SPCONV_ALGO'] = 'native' from typing import * import torch import numpy as np import imageio from easydict import EasyDict as edict from PIL import Image from trellis.pipelines import TrellisImageTo3DPipeline from trellis.representations import Gaussian, MeshExtractResult from trellis.utils import render_utils, postprocessing_utils huggingface_token = os.getenv("HUGGINGFACE_TOKEN") # Constants MAX_SEED = np.iinfo(np.int32).max TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') os.makedirs(TMP_DIR, exist_ok=True) # Create permanent storage directory for Flux generated images SAVE_DIR = "saved_images" if not os.path.exists(SAVE_DIR): os.makedirs(SAVE_DIR, exist_ok=True) def start_session(req: gr.Request): user_dir = os.path.join(TMP_DIR, str(req.session_hash)) os.makedirs(user_dir, exist_ok=True) def end_session(req: gr.Request): user_dir = os.path.join(TMP_DIR, str(req.session_hash)) shutil.rmtree(user_dir) def preprocess_image(image: Image.Image) -> Image.Image: processed_image = trellis_pipeline.preprocess_image(image) return processed_image def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict: return { 'gaussian': { **gs.init_params, '_xyz': gs._xyz.cpu().numpy(), '_features_dc': gs._features_dc.cpu().numpy(), '_scaling': gs._scaling.cpu().numpy(), '_rotation': gs._rotation.cpu().numpy(), '_opacity': gs._opacity.cpu().numpy(), }, 'mesh': { 'vertices': mesh.vertices.cpu().numpy(), 'faces': mesh.faces.cpu().numpy(), }, } def unpack_state(state: dict) -> Tuple[Gaussian, edict]: gs = Gaussian( aabb=state['gaussian']['aabb'], sh_degree=state['gaussian']['sh_degree'], mininum_kernel_size=state['gaussian']['mininum_kernel_size'], scaling_bias=state['gaussian']['scaling_bias'], opacity_bias=state['gaussian']['opacity_bias'], scaling_activation=state['gaussian']['scaling_activation'], ) gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') mesh = edict( vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), faces=torch.tensor(state['mesh']['faces'], device='cuda'), ) return gs, mesh def get_seed(randomize_seed: bool, seed: int) -> int: return np.random.randint(0, MAX_SEED) if randomize_seed else seed @spaces.GPU def generate_flux_image( prompt: str, seed: int, randomize_seed: bool, width: int, height: int, guidance_scale: float, num_inference_steps: int, lora_scale: float, progress: gr.Progress = gr.Progress(track_tqdm=True), ) -> Image.Image: """Generate image using Flux pipeline""" if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=device).manual_seed(seed) image = flux_pipeline( prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, joint_attention_kwargs={"scale": lora_scale}, ).images[0] # Save the generated image timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") unique_id = str(uuid.uuid4())[:8] filename = f"{timestamp}_{unique_id}.png" filepath = os.path.join(SAVE_DIR, filename) image.save(filepath) return image @spaces.GPU def image_to_3d( image: Image.Image, seed: int, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int, req: gr.Request, ) -> Tuple[dict, str]: user_dir = os.path.join(TMP_DIR, str(req.session_hash)) outputs = trellis_pipeline.run( image, seed=seed, formats=["gaussian", "mesh"], preprocess_image=False, sparse_structure_sampler_params={ "steps": ss_sampling_steps, "cfg_strength": ss_guidance_strength, }, slat_sampler_params={ "steps": slat_sampling_steps, "cfg_strength": slat_guidance_strength, }, ) video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] video_path = os.path.join(user_dir, 'sample.mp4') imageio.mimsave(video_path, video, fps=15) state = pack_state(outputs['gaussian'][0], outputs['mesh'][0]) torch.cuda.empty_cache() return state, video_path @spaces.GPU(duration=90) def extract_glb( state: dict, mesh_simplify: float, texture_size: int, req: gr.Request, ) -> Tuple[str, str]: user_dir = os.path.join(TMP_DIR, str(req.session_hash)) gs, mesh = unpack_state(state) glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) glb_path = os.path.join(user_dir, 'sample.glb') glb.export(glb_path) torch.cuda.empty_cache() return glb_path, glb_path @spaces.GPU def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]: user_dir = os.path.join(TMP_DIR, str(req.session_hash)) gs, _ = unpack_state(state) gaussian_path = os.path.join(user_dir, 'sample.ply') gs.save_ply(gaussian_path) torch.cuda.empty_cache() return gaussian_path, gaussian_path # Gradio Interface with gr.Blocks() as demo: gr.Markdown(""" ## Game Asset Generation to 3D with FLUX and TRELLIS * Enter a prompt to generate a game asset image, then convert it to 3D * If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it. """) with gr.Row(): with gr.Column(): # Flux image generation inputs prompt = gr.Text(label="Prompt", placeholder="Enter your game asset description") with gr.Accordion("Generation Settings", open=False): seed = gr.Slider(0, MAX_SEED, label="Seed", value=42, step=1) randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) with gr.Row(): width = gr.Slider(256, 1024, label="Width", value=768, step=32) height = gr.Slider(256, 1024, label="Height", value=768, step=32) with gr.Row(): guidance_scale = gr.Slider(0.0, 10.0, label="Guidance Scale", value=3.5, step=0.1) num_inference_steps = gr.Slider(1, 50, label="Steps", value=30, step=1) lora_scale = gr.Slider(0.0, 1.0, label="LoRA Scale", value=1.0, step=0.1) with gr.Accordion("3D Generation Settings", open=False): gr.Markdown("Stage 1: Sparse Structure Generation") with gr.Row(): ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) gr.Markdown("Stage 2: Structured Latent Generation") with gr.Row(): slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1) slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) generate_btn = gr.Button("Generate") with gr.Accordion("GLB Extraction Settings", open=False): mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01) texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) with gr.Row(): extract_glb_btn = gr.Button("Extract GLB", interactive=False) extract_gs_btn = gr.Button("Extract Gaussian", interactive=False) with gr.Column(): generated_image = gr.Image(label="Generated Asset", type="pil") video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True) model_output = LitModel3D(label="Extracted GLB/Gaussian") with gr.Row(): download_glb = gr.DownloadButton(label="Download GLB", interactive=False) download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False) output_buf = gr.State() # Event handlers demo.load(start_session) demo.unload(end_session) generate_btn.click( generate_flux_image, inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, lora_scale], outputs=[generated_image], ).then( image_to_3d, inputs=[generated_image, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps], outputs=[output_buf, video_output], ).then( lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]), outputs=[extract_glb_btn, extract_gs_btn], ) extract_glb_btn.click( extract_glb, inputs=[output_buf, mesh_simplify, texture_size], outputs=[model_output, download_glb], ).then( lambda: gr.Button(interactive=True), outputs=[download_glb], ) extract_gs_btn.click( extract_gaussian, inputs=[output_buf], outputs=[model_output, download_gs], ).then( lambda: gr.Button(interactive=True), outputs=[download_gs], ) model_output.clear( lambda: gr.Button(interactive=False), outputs=[download_glb], ) # Initialize both pipelines if __name__ == "__main__": from diffusers import FluxTransformer2DModel, FluxPipeline, BitsAndBytesConfig from transformers import T5EncoderModel, BitsAndBytesConfig as BitsAndBytesConfigTF # Initialize Flux pipeline device = "cuda" if torch.cuda.is_available() else "cpu" huggingface_token = os.getenv("HUGGINGFACE_TOKEN") dtype = torch.bfloat16 file_url = "https://huggingface.co./gokaygokay/flux-game/blob/main/gokaygokay_00001_.safetensors" single_file_base_model = "camenduru/FLUX.1-dev-diffusers" quantization_config_tf = BitsAndBytesConfigTF(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16) text_encoder_2 = T5EncoderModel.from_pretrained(single_file_base_model, subfolder="text_encoder_2", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config_tf, token=huggingface_token) quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16) transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config, token=huggingface_token) flux_pipeline = FluxPipeline.from_pretrained(single_file_base_model, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=dtype, quantization_config=quantization_config, token=huggingface_token) # Initialize Trellis pipeline trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large") trellis_pipeline.cuda() try: trellis_pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) except: pass demo.launch()