Spaces:
Running
on
Zero
Running
on
Zero
gokaygokay
commited on
Commit
·
6afb035
1
Parent(s):
cd9c33a
spacesgpu
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
<<<<<<< HEAD
|
2 |
import gradio as gr
|
3 |
import spaces
|
4 |
from gradio_litmodel3d import LitModel3D
|
@@ -274,18 +273,21 @@ with gr.Blocks() as demo:
|
|
274 |
|
275 |
# Initialize both pipelines
|
276 |
if __name__ == "__main__":
|
277 |
-
from diffusers import FluxTransformer2DModel, FluxPipeline
|
|
|
|
|
278 |
# Initialize Flux pipeline
|
279 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
280 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
281 |
|
282 |
-
#quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
283 |
-
hf_token = ""
|
284 |
dtype = torch.bfloat16
|
285 |
file_url = "https://huggingface.co/gokaygokay/flux-game/blob/main/gokaygokay_00001_.safetensors"
|
286 |
single_file_base_model = "camenduru/FLUX.1-dev-diffusers"
|
287 |
-
|
288 |
-
|
|
|
|
|
|
|
289 |
|
290 |
# Initialize Trellis pipeline
|
291 |
trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
|
@@ -295,304 +297,4 @@ if __name__ == "__main__":
|
|
295 |
except:
|
296 |
pass
|
297 |
|
298 |
-
=======
|
299 |
-
import gradio as gr
|
300 |
-
import spaces
|
301 |
-
from gradio_litmodel3d import LitModel3D
|
302 |
-
import os
|
303 |
-
import shutil
|
304 |
-
import random
|
305 |
-
import uuid
|
306 |
-
from datetime import datetime
|
307 |
-
from diffusers import DiffusionPipeline
|
308 |
-
|
309 |
-
os.environ['SPCONV_ALGO'] = 'native'
|
310 |
-
from typing import *
|
311 |
-
import torch
|
312 |
-
import numpy as np
|
313 |
-
import imageio
|
314 |
-
from easydict import EasyDict as edict
|
315 |
-
from PIL import Image
|
316 |
-
from trellis.pipelines import TrellisImageTo3DPipeline
|
317 |
-
from trellis.representations import Gaussian, MeshExtractResult
|
318 |
-
from trellis.utils import render_utils, postprocessing_utils
|
319 |
-
|
320 |
-
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
321 |
-
# Constants
|
322 |
-
MAX_SEED = np.iinfo(np.int32).max
|
323 |
-
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
|
324 |
-
os.makedirs(TMP_DIR, exist_ok=True)
|
325 |
-
|
326 |
-
# Create permanent storage directory for Flux generated images
|
327 |
-
SAVE_DIR = "saved_images"
|
328 |
-
if not os.path.exists(SAVE_DIR):
|
329 |
-
os.makedirs(SAVE_DIR, exist_ok=True)
|
330 |
-
|
331 |
-
def start_session(req: gr.Request):
|
332 |
-
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
333 |
-
os.makedirs(user_dir, exist_ok=True)
|
334 |
-
|
335 |
-
def end_session(req: gr.Request):
|
336 |
-
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
337 |
-
shutil.rmtree(user_dir)
|
338 |
-
|
339 |
-
def preprocess_image(image: Image.Image) -> Image.Image:
|
340 |
-
processed_image = trellis_pipeline.preprocess_image(image)
|
341 |
-
return processed_image
|
342 |
-
|
343 |
-
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
|
344 |
-
return {
|
345 |
-
'gaussian': {
|
346 |
-
**gs.init_params,
|
347 |
-
'_xyz': gs._xyz.cpu().numpy(),
|
348 |
-
'_features_dc': gs._features_dc.cpu().numpy(),
|
349 |
-
'_scaling': gs._scaling.cpu().numpy(),
|
350 |
-
'_rotation': gs._rotation.cpu().numpy(),
|
351 |
-
'_opacity': gs._opacity.cpu().numpy(),
|
352 |
-
},
|
353 |
-
'mesh': {
|
354 |
-
'vertices': mesh.vertices.cpu().numpy(),
|
355 |
-
'faces': mesh.faces.cpu().numpy(),
|
356 |
-
},
|
357 |
-
}
|
358 |
-
|
359 |
-
def unpack_state(state: dict) -> Tuple[Gaussian, edict]:
|
360 |
-
gs = Gaussian(
|
361 |
-
aabb=state['gaussian']['aabb'],
|
362 |
-
sh_degree=state['gaussian']['sh_degree'],
|
363 |
-
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
|
364 |
-
scaling_bias=state['gaussian']['scaling_bias'],
|
365 |
-
opacity_bias=state['gaussian']['opacity_bias'],
|
366 |
-
scaling_activation=state['gaussian']['scaling_activation'],
|
367 |
-
)
|
368 |
-
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
|
369 |
-
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
|
370 |
-
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
|
371 |
-
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
|
372 |
-
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
|
373 |
-
|
374 |
-
mesh = edict(
|
375 |
-
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
|
376 |
-
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
|
377 |
-
)
|
378 |
-
|
379 |
-
return gs, mesh
|
380 |
-
|
381 |
-
def get_seed(randomize_seed: bool, seed: int) -> int:
|
382 |
-
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
383 |
-
|
384 |
-
@spaces.GPU
|
385 |
-
def generate_flux_image(
|
386 |
-
prompt: str,
|
387 |
-
seed: int,
|
388 |
-
randomize_seed: bool,
|
389 |
-
width: int,
|
390 |
-
height: int,
|
391 |
-
guidance_scale: float,
|
392 |
-
num_inference_steps: int,
|
393 |
-
lora_scale: float,
|
394 |
-
progress: gr.Progress = gr.Progress(track_tqdm=True),
|
395 |
-
) -> Image.Image:
|
396 |
-
"""Generate image using Flux pipeline"""
|
397 |
-
if randomize_seed:
|
398 |
-
seed = random.randint(0, MAX_SEED)
|
399 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
400 |
-
|
401 |
-
image = flux_pipeline(
|
402 |
-
prompt=prompt,
|
403 |
-
guidance_scale=guidance_scale,
|
404 |
-
num_inference_steps=num_inference_steps,
|
405 |
-
width=width,
|
406 |
-
height=height,
|
407 |
-
generator=generator,
|
408 |
-
joint_attention_kwargs={"scale": lora_scale},
|
409 |
-
).images[0]
|
410 |
-
|
411 |
-
# Save the generated image
|
412 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
413 |
-
unique_id = str(uuid.uuid4())[:8]
|
414 |
-
filename = f"{timestamp}_{unique_id}.png"
|
415 |
-
filepath = os.path.join(SAVE_DIR, filename)
|
416 |
-
image.save(filepath)
|
417 |
-
|
418 |
-
return image
|
419 |
-
|
420 |
-
@spaces.GPU
|
421 |
-
def image_to_3d(
|
422 |
-
image: Image.Image,
|
423 |
-
seed: int,
|
424 |
-
ss_guidance_strength: float,
|
425 |
-
ss_sampling_steps: int,
|
426 |
-
slat_guidance_strength: float,
|
427 |
-
slat_sampling_steps: int,
|
428 |
-
req: gr.Request,
|
429 |
-
) -> Tuple[dict, str]:
|
430 |
-
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
431 |
-
outputs = trellis_pipeline.run(
|
432 |
-
image,
|
433 |
-
seed=seed,
|
434 |
-
formats=["gaussian", "mesh"],
|
435 |
-
preprocess_image=False,
|
436 |
-
sparse_structure_sampler_params={
|
437 |
-
"steps": ss_sampling_steps,
|
438 |
-
"cfg_strength": ss_guidance_strength,
|
439 |
-
},
|
440 |
-
slat_sampler_params={
|
441 |
-
"steps": slat_sampling_steps,
|
442 |
-
"cfg_strength": slat_guidance_strength,
|
443 |
-
},
|
444 |
-
)
|
445 |
-
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
446 |
-
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
447 |
-
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
448 |
-
video_path = os.path.join(user_dir, 'sample.mp4')
|
449 |
-
imageio.mimsave(video_path, video, fps=15)
|
450 |
-
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
|
451 |
-
torch.cuda.empty_cache()
|
452 |
-
return state, video_path
|
453 |
-
|
454 |
-
@spaces.GPU(duration=90)
|
455 |
-
def extract_glb(
|
456 |
-
state: dict,
|
457 |
-
mesh_simplify: float,
|
458 |
-
texture_size: int,
|
459 |
-
req: gr.Request,
|
460 |
-
) -> Tuple[str, str]:
|
461 |
-
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
462 |
-
gs, mesh = unpack_state(state)
|
463 |
-
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
464 |
-
glb_path = os.path.join(user_dir, 'sample.glb')
|
465 |
-
glb.export(glb_path)
|
466 |
-
torch.cuda.empty_cache()
|
467 |
-
return glb_path, glb_path
|
468 |
-
|
469 |
-
@spaces.GPU
|
470 |
-
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
471 |
-
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
472 |
-
gs, _ = unpack_state(state)
|
473 |
-
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
474 |
-
gs.save_ply(gaussian_path)
|
475 |
-
torch.cuda.empty_cache()
|
476 |
-
return gaussian_path, gaussian_path
|
477 |
-
|
478 |
-
# Gradio Interface
|
479 |
-
with gr.Blocks() as demo:
|
480 |
-
gr.Markdown("""
|
481 |
-
## Game Asset Generation to 3D with FLUX and TRELLIS
|
482 |
-
* Enter a prompt to generate a game asset image, then convert it to 3D
|
483 |
-
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
|
484 |
-
""")
|
485 |
-
|
486 |
-
with gr.Row():
|
487 |
-
with gr.Column():
|
488 |
-
# Flux image generation inputs
|
489 |
-
prompt = gr.Text(label="Prompt", placeholder="Enter your game asset description")
|
490 |
-
with gr.Accordion("Generation Settings", open=False):
|
491 |
-
seed = gr.Slider(0, MAX_SEED, label="Seed", value=42, step=1)
|
492 |
-
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
493 |
-
with gr.Row():
|
494 |
-
width = gr.Slider(256, 1024, label="Width", value=768, step=32)
|
495 |
-
height = gr.Slider(256, 1024, label="Height", value=768, step=32)
|
496 |
-
with gr.Row():
|
497 |
-
guidance_scale = gr.Slider(0.0, 10.0, label="Guidance Scale", value=3.5, step=0.1)
|
498 |
-
num_inference_steps = gr.Slider(1, 50, label="Steps", value=30, step=1)
|
499 |
-
lora_scale = gr.Slider(0.0, 1.0, label="LoRA Scale", value=1.0, step=0.1)
|
500 |
-
|
501 |
-
with gr.Accordion("3D Generation Settings", open=False):
|
502 |
-
gr.Markdown("Stage 1: Sparse Structure Generation")
|
503 |
-
with gr.Row():
|
504 |
-
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
|
505 |
-
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
506 |
-
gr.Markdown("Stage 2: Structured Latent Generation")
|
507 |
-
with gr.Row():
|
508 |
-
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
509 |
-
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
510 |
-
|
511 |
-
generate_btn = gr.Button("Generate")
|
512 |
-
|
513 |
-
with gr.Accordion("GLB Extraction Settings", open=False):
|
514 |
-
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
515 |
-
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
516 |
-
|
517 |
-
with gr.Row():
|
518 |
-
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
519 |
-
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
520 |
-
|
521 |
-
with gr.Column():
|
522 |
-
generated_image = gr.Image(label="Generated Asset", type="pil")
|
523 |
-
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True)
|
524 |
-
model_output = LitModel3D(label="Extracted GLB/Gaussian")
|
525 |
-
|
526 |
-
with gr.Row():
|
527 |
-
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
528 |
-
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
|
529 |
-
|
530 |
-
output_buf = gr.State()
|
531 |
-
|
532 |
-
# Event handlers
|
533 |
-
demo.load(start_session)
|
534 |
-
demo.unload(end_session)
|
535 |
-
|
536 |
-
generate_btn.click(
|
537 |
-
generate_flux_image,
|
538 |
-
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, lora_scale],
|
539 |
-
outputs=[generated_image],
|
540 |
-
).then(
|
541 |
-
image_to_3d,
|
542 |
-
inputs=[generated_image, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
|
543 |
-
outputs=[output_buf, video_output],
|
544 |
-
).then(
|
545 |
-
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
546 |
-
outputs=[extract_glb_btn, extract_gs_btn],
|
547 |
-
)
|
548 |
-
|
549 |
-
extract_glb_btn.click(
|
550 |
-
extract_glb,
|
551 |
-
inputs=[output_buf, mesh_simplify, texture_size],
|
552 |
-
outputs=[model_output, download_glb],
|
553 |
-
).then(
|
554 |
-
lambda: gr.Button(interactive=True),
|
555 |
-
outputs=[download_glb],
|
556 |
-
)
|
557 |
-
|
558 |
-
extract_gs_btn.click(
|
559 |
-
extract_gaussian,
|
560 |
-
inputs=[output_buf],
|
561 |
-
outputs=[model_output, download_gs],
|
562 |
-
).then(
|
563 |
-
lambda: gr.Button(interactive=True),
|
564 |
-
outputs=[download_gs],
|
565 |
-
)
|
566 |
-
|
567 |
-
model_output.clear(
|
568 |
-
lambda: gr.Button(interactive=False),
|
569 |
-
outputs=[download_glb],
|
570 |
-
)
|
571 |
-
|
572 |
-
# Initialize both pipelines
|
573 |
-
if __name__ == "__main__":
|
574 |
-
from diffusers import FluxTransformer2DModel, FluxPipeline, BitsAndBytesConfig
|
575 |
-
from transformers import BitsAndBytesConfig as BitsAndBytesConfigTF
|
576 |
-
# Initialize Flux pipeline
|
577 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
578 |
-
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
579 |
-
|
580 |
-
dtype = torch.bfloat16
|
581 |
-
file_url = "https://huggingface.co/gokaygokay/flux-game/blob/main/gokaygokay_00001_.safetensors"
|
582 |
-
single_file_base_model = "camenduru/FLUX.1-dev-diffusers"
|
583 |
-
quantization_config_tf = BitsAndBytesConfigTF(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16)
|
584 |
-
text_encoder_2 = T5EncoderModel.from_pretrained(single_file_base_model, subfolder="text_encoder_2", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config_tf, token=huggingface_token)
|
585 |
-
quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16)
|
586 |
-
transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config, token=huggingface_token)
|
587 |
-
flux_pipeline = FluxPipeline.from_pretrained(single_file_base_model, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=dtype, quantization_config=quantization_config, token=huggingface_token)
|
588 |
-
|
589 |
-
# Initialize Trellis pipeline
|
590 |
-
trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
|
591 |
-
trellis_pipeline.cuda()
|
592 |
-
try:
|
593 |
-
trellis_pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
|
594 |
-
except:
|
595 |
-
pass
|
596 |
-
|
597 |
-
>>>>>>> d74f4adbedc376ca385ce749e827d3c18535c4f0
|
598 |
demo.launch()
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
from gradio_litmodel3d import LitModel3D
|
|
|
273 |
|
274 |
# Initialize both pipelines
|
275 |
if __name__ == "__main__":
|
276 |
+
from diffusers import FluxTransformer2DModel, FluxPipeline, BitsAndBytesConfig, BitsAndBytesConfigTF
|
277 |
+
from transformers import T5EncoderModel
|
278 |
+
|
279 |
# Initialize Flux pipeline
|
280 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
281 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
282 |
|
|
|
|
|
283 |
dtype = torch.bfloat16
|
284 |
file_url = "https://huggingface.co/gokaygokay/flux-game/blob/main/gokaygokay_00001_.safetensors"
|
285 |
single_file_base_model = "camenduru/FLUX.1-dev-diffusers"
|
286 |
+
quantization_config_tf = BitsAndBytesConfigTF(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16)
|
287 |
+
text_encoder_2 = T5EncoderModel.from_pretrained(single_file_base_model, subfolder="text_encoder_2", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config_tf, token=huggingface_token)
|
288 |
+
quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16)
|
289 |
+
transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config, token=huggingface_token)
|
290 |
+
flux_pipeline = FluxPipeline.from_pretrained(single_file_base_model, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=dtype, quantization_config=quantization_config, token=huggingface_token)
|
291 |
|
292 |
# Initialize Trellis pipeline
|
293 |
trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
|
|
|
297 |
except:
|
298 |
pass
|
299 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
demo.launch()
|