Flux-TRELLIS / trellis /utils /general_utils.py
gokaygokay's picture
Upload 194 files
138f509 verified
import numpy as np
import cv2
import torch
# Dictionary utils
def _dict_merge(dicta, dictb, prefix=''):
"""
Merge two dictionaries.
"""
assert isinstance(dicta, dict), 'input must be a dictionary'
assert isinstance(dictb, dict), 'input must be a dictionary'
dict_ = {}
all_keys = set(dicta.keys()).union(set(dictb.keys()))
for key in all_keys:
if key in dicta.keys() and key in dictb.keys():
if isinstance(dicta[key], dict) and isinstance(dictb[key], dict):
dict_[key] = _dict_merge(dicta[key], dictb[key], prefix=f'{prefix}.{key}')
else:
raise ValueError(f'Duplicate key {prefix}.{key} found in both dictionaries. Types: {type(dicta[key])}, {type(dictb[key])}')
elif key in dicta.keys():
dict_[key] = dicta[key]
else:
dict_[key] = dictb[key]
return dict_
def dict_merge(dicta, dictb):
"""
Merge two dictionaries.
"""
return _dict_merge(dicta, dictb, prefix='')
def dict_foreach(dic, func, special_func={}):
"""
Recursively apply a function to all non-dictionary leaf values in a dictionary.
"""
assert isinstance(dic, dict), 'input must be a dictionary'
for key in dic.keys():
if isinstance(dic[key], dict):
dic[key] = dict_foreach(dic[key], func)
else:
if key in special_func.keys():
dic[key] = special_func[key](dic[key])
else:
dic[key] = func(dic[key])
return dic
def dict_reduce(dicts, func, special_func={}):
"""
Reduce a list of dictionaries. Leaf values must be scalars.
"""
assert isinstance(dicts, list), 'input must be a list of dictionaries'
assert all([isinstance(d, dict) for d in dicts]), 'input must be a list of dictionaries'
assert len(dicts) > 0, 'input must be a non-empty list of dictionaries'
all_keys = set([key for dict_ in dicts for key in dict_.keys()])
reduced_dict = {}
for key in all_keys:
vlist = [dict_[key] for dict_ in dicts if key in dict_.keys()]
if isinstance(vlist[0], dict):
reduced_dict[key] = dict_reduce(vlist, func, special_func)
else:
if key in special_func.keys():
reduced_dict[key] = special_func[key](vlist)
else:
reduced_dict[key] = func(vlist)
return reduced_dict
def dict_any(dic, func):
"""
Recursively apply a function to all non-dictionary leaf values in a dictionary.
"""
assert isinstance(dic, dict), 'input must be a dictionary'
for key in dic.keys():
if isinstance(dic[key], dict):
if dict_any(dic[key], func):
return True
else:
if func(dic[key]):
return True
return False
def dict_all(dic, func):
"""
Recursively apply a function to all non-dictionary leaf values in a dictionary.
"""
assert isinstance(dic, dict), 'input must be a dictionary'
for key in dic.keys():
if isinstance(dic[key], dict):
if not dict_all(dic[key], func):
return False
else:
if not func(dic[key]):
return False
return True
def dict_flatten(dic, sep='.'):
"""
Flatten a nested dictionary into a dictionary with no nested dictionaries.
"""
assert isinstance(dic, dict), 'input must be a dictionary'
flat_dict = {}
for key in dic.keys():
if isinstance(dic[key], dict):
sub_dict = dict_flatten(dic[key], sep=sep)
for sub_key in sub_dict.keys():
flat_dict[str(key) + sep + str(sub_key)] = sub_dict[sub_key]
else:
flat_dict[key] = dic[key]
return flat_dict
def make_grid(images, nrow=None, ncol=None, aspect_ratio=None):
num_images = len(images)
if nrow is None and ncol is None:
if aspect_ratio is not None:
nrow = int(np.round(np.sqrt(num_images / aspect_ratio)))
else:
nrow = int(np.sqrt(num_images))
ncol = (num_images + nrow - 1) // nrow
elif nrow is None and ncol is not None:
nrow = (num_images + ncol - 1) // ncol
elif nrow is not None and ncol is None:
ncol = (num_images + nrow - 1) // nrow
else:
assert nrow * ncol >= num_images, 'nrow * ncol must be greater than or equal to the number of images'
grid = np.zeros((nrow * images[0].shape[0], ncol * images[0].shape[1], images[0].shape[2]), dtype=images[0].dtype)
for i, img in enumerate(images):
row = i // ncol
col = i % ncol
grid[row * img.shape[0]:(row + 1) * img.shape[0], col * img.shape[1]:(col + 1) * img.shape[1]] = img
return grid
def notes_on_image(img, notes=None):
img = np.pad(img, ((0, 32), (0, 0), (0, 0)), 'constant', constant_values=0)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
if notes is not None:
img = cv2.putText(img, notes, (0, img.shape[0] - 4), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 1)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img
def save_image_with_notes(img, path, notes=None):
"""
Save an image with notes.
"""
if isinstance(img, torch.Tensor):
img = img.cpu().numpy().transpose(1, 2, 0)
if img.dtype == np.float32 or img.dtype == np.float64:
img = np.clip(img * 255, 0, 255).astype(np.uint8)
img = notes_on_image(img, notes)
cv2.imwrite(path, cv2.cvtColor(img, cv2.COLOR_RGB2BGR))
# debug utils
def atol(x, y):
"""
Absolute tolerance.
"""
return torch.abs(x - y)
def rtol(x, y):
"""
Relative tolerance.
"""
return torch.abs(x - y) / torch.clamp_min(torch.maximum(torch.abs(x), torch.abs(y)), 1e-12)
# print utils
def indent(s, n=4):
"""
Indent a string.
"""
lines = s.split('\n')
for i in range(1, len(lines)):
lines[i] = ' ' * n + lines[i]
return '\n'.join(lines)