Flux-TRELLIS / infer /text_to_image.py
gokaygokay's picture
Upload 93 files
0a88b62 verified
raw
history blame
4.12 kB
# Open Source Model Licensed under the Apache License Version 2.0 and Other Licenses of the Third-Party Components therein:
# The below Model in this distribution may have been modified by THL A29 Limited ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
# The below software and/or models in this distribution may have been
# modified by THL A29 Limited ("Tencent Modifications").
# All Tencent Modifications are Copyright (C) THL A29 Limited.
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import torch
from .utils import seed_everything, timing_decorator, auto_amp_inference
from .utils import get_parameter_number, set_parameter_grad_false
from diffusers import HunyuanDiTPipeline, AutoPipelineForText2Image
class Text2Image():
def __init__(self, pretrain="weights/hunyuanDiT", device="cuda:0", save_memory=False):
'''
save_memory: if GPU memory is low, can set it
'''
self.save_memory = save_memory
self.device = device
self.pipe = AutoPipelineForText2Image.from_pretrained(
pretrain,
torch_dtype = torch.float16,
enable_pag = True,
pag_applied_layers = ["blocks.(16|17|18|19)"]
)
set_parameter_grad_false(self.pipe.transformer)
print('text2image transformer model', get_parameter_number(self.pipe.transformer))
if not save_memory:
self.pipe = self.pipe.to(device)
self.neg_txt = "文本,特写,裁剪,出框,最差质量,低质量,JPEG伪影,PGLY,重复,病态,残缺,多余的手指,变异的手," \
"画得不好的手,画得不好的脸,变异,畸形,模糊,脱水,糟糕的解剖学,糟糕的比例,多余的肢体,克隆的脸," \
"毁容,恶心的比例,畸形的肢体,缺失的手臂,缺失的腿,额外的手臂,额外的腿,融合的手指,手指太多,长脖子"
@torch.no_grad()
@timing_decorator('text to image')
@auto_amp_inference
def __call__(self, *args, **kwargs):
if self.save_memory:
self.pipe = self.pipe.to(self.device)
torch.cuda.empty_cache()
res = self.call(*args, **kwargs)
self.pipe = self.pipe.to("cpu")
else:
res = self.call(*args, **kwargs)
torch.cuda.empty_cache()
return res
def call(self, prompt, seed=0, steps=25):
'''
inputs:
prompr: str
seed: int
steps: int
return:
rgb: PIL.Image
'''
prompt = prompt + ",白色背景,3D风格,最佳质量"
seed_everything(seed)
generator = torch.Generator(device=self.device)
if seed is not None: generator = generator.manual_seed(int(seed))
rgb = self.pipe(prompt=prompt, negative_prompt=self.neg_txt, num_inference_steps=steps,
pag_scale=1.3, width=1024, height=1024, generator=generator, return_dict=False)[0][0]
torch.cuda.empty_cache()
return rgb