|
|
|
import argparse |
|
import logging |
|
import os |
|
import os.path as osp |
|
|
|
from mmengine.config import Config, DictAction |
|
from mmengine.logging import print_log |
|
from mmengine.registry import RUNNERS |
|
from mmengine.runner import Runner |
|
|
|
from mmdet3d.utils import replace_ceph_backend |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='Train a 3D detector') |
|
parser.add_argument('config', help='train config file path') |
|
parser.add_argument('--work-dir', help='the dir to save logs and models') |
|
parser.add_argument( |
|
'--amp', |
|
action='store_true', |
|
default=False, |
|
help='enable automatic-mixed-precision training') |
|
parser.add_argument( |
|
'--sync_bn', |
|
choices=['none', 'torch', 'mmcv'], |
|
default='none', |
|
help='convert all BatchNorm layers in the model to SyncBatchNorm ' |
|
'(SyncBN) or mmcv.ops.sync_bn.SyncBatchNorm (MMSyncBN) layers.') |
|
parser.add_argument( |
|
'--auto-scale-lr', |
|
action='store_true', |
|
help='enable automatically scaling LR.') |
|
parser.add_argument( |
|
'--resume', |
|
nargs='?', |
|
type=str, |
|
const='auto', |
|
help='If specify checkpoint path, resume from it, while if not ' |
|
'specify, try to auto resume from the latest checkpoint ' |
|
'in the work directory.') |
|
parser.add_argument( |
|
'--ceph', action='store_true', help='Use ceph as data storage backend') |
|
parser.add_argument( |
|
'--cfg-options', |
|
nargs='+', |
|
action=DictAction, |
|
help='override some settings in the used config, the key-value pair ' |
|
'in xxx=yyy format will be merged into config file. If the value to ' |
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' |
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' |
|
'Note that the quotation marks are necessary and that no white space ' |
|
'is allowed.') |
|
parser.add_argument( |
|
'--launcher', |
|
choices=['none', 'pytorch', 'slurm', 'mpi'], |
|
default='none', |
|
help='job launcher') |
|
|
|
|
|
|
|
parser.add_argument('--local_rank', '--local-rank', type=int, default=0) |
|
args = parser.parse_args() |
|
if 'LOCAL_RANK' not in os.environ: |
|
os.environ['LOCAL_RANK'] = str(args.local_rank) |
|
return args |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
|
|
cfg = Config.fromfile(args.config) |
|
|
|
|
|
if args.ceph: |
|
cfg = replace_ceph_backend(cfg) |
|
|
|
cfg.launcher = args.launcher |
|
if args.cfg_options is not None: |
|
cfg.merge_from_dict(args.cfg_options) |
|
|
|
|
|
if args.work_dir is not None: |
|
|
|
cfg.work_dir = args.work_dir |
|
elif cfg.get('work_dir', None) is None: |
|
|
|
cfg.work_dir = osp.join('./work_dirs', |
|
osp.splitext(osp.basename(args.config))[0]) |
|
|
|
|
|
if args.amp is True: |
|
optim_wrapper = cfg.optim_wrapper.type |
|
if optim_wrapper == 'AmpOptimWrapper': |
|
print_log( |
|
'AMP training is already enabled in your config.', |
|
logger='current', |
|
level=logging.WARNING) |
|
else: |
|
assert optim_wrapper == 'OptimWrapper', ( |
|
'`--amp` is only supported when the optimizer wrapper type is ' |
|
f'`OptimWrapper` but got {optim_wrapper}.') |
|
cfg.optim_wrapper.type = 'AmpOptimWrapper' |
|
cfg.optim_wrapper.loss_scale = 'dynamic' |
|
|
|
|
|
if args.sync_bn != 'none': |
|
cfg.sync_bn = args.sync_bn |
|
|
|
|
|
if args.auto_scale_lr: |
|
if 'auto_scale_lr' in cfg and \ |
|
'enable' in cfg.auto_scale_lr and \ |
|
'base_batch_size' in cfg.auto_scale_lr: |
|
cfg.auto_scale_lr.enable = True |
|
else: |
|
raise RuntimeError('Can not find "auto_scale_lr" or ' |
|
'"auto_scale_lr.enable" or ' |
|
'"auto_scale_lr.base_batch_size" in your' |
|
' configuration file.') |
|
|
|
|
|
if args.resume == 'auto': |
|
cfg.resume = True |
|
cfg.load_from = None |
|
elif args.resume is not None: |
|
cfg.resume = True |
|
cfg.load_from = args.resume |
|
|
|
|
|
if 'runner_type' not in cfg: |
|
|
|
runner = Runner.from_cfg(cfg) |
|
else: |
|
|
|
|
|
runner = RUNNERS.build(cfg) |
|
|
|
|
|
runner.train() |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|