3dtest / tools /dataset_converters /sunrgbd_data_utils.py
giantmonkeyTC
mm2
c2ca15f
# Copyright (c) OpenMMLab. All rights reserved.
from concurrent import futures as futures
from os import path as osp
import mmcv
import mmengine
import numpy as np
from scipy import io as sio
def random_sampling(points, num_points, replace=None, return_choices=False):
"""Random sampling.
Sampling point cloud to a certain number of points.
Args:
points (ndarray): Point cloud.
num_points (int): The number of samples.
replace (bool): Whether the sample is with or without replacement.
return_choices (bool): Whether to return choices.
Returns:
points (ndarray): Point cloud after sampling.
"""
if replace is None:
replace = (points.shape[0] < num_points)
choices = np.random.choice(points.shape[0], num_points, replace=replace)
if return_choices:
return points[choices], choices
else:
return points[choices]
class SUNRGBDInstance(object):
def __init__(self, line):
data = line.split(' ')
data[1:] = [float(x) for x in data[1:]]
self.classname = data[0]
self.xmin = data[1]
self.ymin = data[2]
self.xmax = data[1] + data[3]
self.ymax = data[2] + data[4]
self.box2d = np.array([self.xmin, self.ymin, self.xmax, self.ymax])
self.centroid = np.array([data[5], data[6], data[7]])
self.width = data[8]
self.length = data[9]
self.height = data[10]
# data[9] is x_size (length), data[8] is y_size (width), data[10] is
# z_size (height) in our depth coordinate system,
# l corresponds to the size along the x axis
self.size = np.array([data[9], data[8], data[10]]) * 2
self.orientation = np.zeros((3, ))
self.orientation[0] = data[11]
self.orientation[1] = data[12]
self.heading_angle = np.arctan2(self.orientation[1],
self.orientation[0])
self.box3d = np.concatenate(
[self.centroid, self.size, self.heading_angle[None]])
class SUNRGBDData(object):
"""SUNRGBD data.
Generate scannet infos for sunrgbd_converter.
Args:
root_path (str): Root path of the raw data.
split (str, optional): Set split type of the data. Default: 'train'.
use_v1 (bool, optional): Whether to use v1. Default: False.
"""
def __init__(self, root_path, split='train', use_v1=False):
self.root_dir = root_path
self.split = split
self.split_dir = osp.join(root_path, 'sunrgbd_trainval')
self.classes = [
'bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser',
'night_stand', 'bookshelf', 'bathtub'
]
self.cat2label = {cat: self.classes.index(cat) for cat in self.classes}
self.label2cat = {
label: self.classes[label]
for label in range(len(self.classes))
}
assert split in ['train', 'val', 'test']
split_file = osp.join(self.split_dir, f'{split}_data_idx.txt')
mmengine.check_file_exist(split_file)
self.sample_id_list = map(int, mmengine.list_from_file(split_file))
self.image_dir = osp.join(self.split_dir, 'image')
self.calib_dir = osp.join(self.split_dir, 'calib')
self.depth_dir = osp.join(self.split_dir, 'depth')
if use_v1:
self.label_dir = osp.join(self.split_dir, 'label_v1')
else:
self.label_dir = osp.join(self.split_dir, 'label')
def __len__(self):
return len(self.sample_id_list)
def get_image(self, idx):
img_filename = osp.join(self.image_dir, f'{idx:06d}.jpg')
return mmcv.imread(img_filename)
def get_image_shape(self, idx):
image = self.get_image(idx)
return np.array(image.shape[:2], dtype=np.int32)
def get_depth(self, idx):
depth_filename = osp.join(self.depth_dir, f'{idx:06d}.mat')
depth = sio.loadmat(depth_filename)['instance']
return depth
def get_calibration(self, idx):
calib_filepath = osp.join(self.calib_dir, f'{idx:06d}.txt')
lines = [line.rstrip() for line in open(calib_filepath)]
Rt = np.array([float(x) for x in lines[0].split(' ')])
Rt = np.reshape(Rt, (3, 3), order='F').astype(np.float32)
K = np.array([float(x) for x in lines[1].split(' ')])
K = np.reshape(K, (3, 3), order='F').astype(np.float32)
return K, Rt
def get_label_objects(self, idx):
label_filename = osp.join(self.label_dir, f'{idx:06d}.txt')
lines = [line.rstrip() for line in open(label_filename)]
objects = [SUNRGBDInstance(line) for line in lines]
return objects
def get_infos(self, num_workers=4, has_label=True, sample_id_list=None):
"""Get data infos.
This method gets information from the raw data.
Args:
num_workers (int, optional): Number of threads to be used.
Default: 4.
has_label (bool, optional): Whether the data has label.
Default: True.
sample_id_list (list[int], optional): Index list of the sample.
Default: None.
Returns:
infos (list[dict]): Information of the raw data.
"""
def process_single_scene(sample_idx):
print(f'{self.split} sample_idx: {sample_idx}')
# convert depth to points
SAMPLE_NUM = 50000
# TODO: Check whether can move the point
# sampling process during training.
pc_upright_depth = self.get_depth(sample_idx)
pc_upright_depth_subsampled = random_sampling(
pc_upright_depth, SAMPLE_NUM)
info = dict()
pc_info = {'num_features': 6, 'lidar_idx': sample_idx}
info['point_cloud'] = pc_info
mmengine.mkdir_or_exist(osp.join(self.root_dir, 'points'))
pc_upright_depth_subsampled.tofile(
osp.join(self.root_dir, 'points', f'{sample_idx:06d}.bin'))
info['pts_path'] = osp.join('points', f'{sample_idx:06d}.bin')
img_path = osp.join('image', f'{sample_idx:06d}.jpg')
image_info = {
'image_idx': sample_idx,
'image_shape': self.get_image_shape(sample_idx),
'image_path': img_path
}
info['image'] = image_info
K, Rt = self.get_calibration(sample_idx)
calib_info = {'K': K, 'Rt': Rt}
info['calib'] = calib_info
if has_label:
obj_list = self.get_label_objects(sample_idx)
annotations = {}
annotations['gt_num'] = len([
obj.classname for obj in obj_list
if obj.classname in self.cat2label.keys()
])
if annotations['gt_num'] != 0:
annotations['name'] = np.array([
obj.classname for obj in obj_list
if obj.classname in self.cat2label.keys()
])
annotations['bbox'] = np.concatenate([
obj.box2d.reshape(1, 4) for obj in obj_list
if obj.classname in self.cat2label.keys()
],
axis=0)
annotations['location'] = np.concatenate([
obj.centroid.reshape(1, 3) for obj in obj_list
if obj.classname in self.cat2label.keys()
],
axis=0)
annotations['dimensions'] = 2 * np.array([
[obj.length, obj.width, obj.height] for obj in obj_list
if obj.classname in self.cat2label.keys()
]) # lwh (depth) format
annotations['rotation_y'] = np.array([
obj.heading_angle for obj in obj_list
if obj.classname in self.cat2label.keys()
])
annotations['index'] = np.arange(
len(obj_list), dtype=np.int32)
annotations['class'] = np.array([
self.cat2label[obj.classname] for obj in obj_list
if obj.classname in self.cat2label.keys()
])
annotations['gt_boxes_upright_depth'] = np.stack(
[
obj.box3d for obj in obj_list
if obj.classname in self.cat2label.keys()
],
axis=0) # (K,8)
info['annos'] = annotations
return info
sample_id_list = sample_id_list if \
sample_id_list is not None else self.sample_id_list
with futures.ThreadPoolExecutor(num_workers) as executor:
infos = executor.map(process_single_scene, sample_id_list)
return list(infos)