|
|
|
|
|
import os |
|
|
|
import cv2 |
|
import numpy as np |
|
import tqdm |
|
|
|
from saicinpainting.evaluation.data import PrecomputedInpaintingResultsDataset |
|
from saicinpainting.evaluation.utils import load_yaml |
|
|
|
|
|
def main(args): |
|
config = load_yaml(args.config) |
|
|
|
if not args.predictdir.endswith('/'): |
|
args.predictdir += '/' |
|
|
|
dataset = PrecomputedInpaintingResultsDataset(args.datadir, args.predictdir, **config.dataset_kwargs) |
|
|
|
os.makedirs(os.path.dirname(args.outpath), exist_ok=True) |
|
|
|
for img_i in tqdm.trange(len(dataset)): |
|
pred_fname = dataset.pred_filenames[img_i] |
|
cur_out_fname = os.path.join(args.outpath, pred_fname[len(args.predictdir):]) |
|
os.makedirs(os.path.dirname(cur_out_fname), exist_ok=True) |
|
|
|
sample = dataset[img_i] |
|
img = sample['image'] |
|
mask = sample['mask'] |
|
inpainted = sample['inpainted'] |
|
|
|
inpainted_blurred = cv2.GaussianBlur(np.transpose(inpainted, (1, 2, 0)), |
|
ksize=(args.k, args.k), |
|
sigmaX=args.s, sigmaY=args.s, |
|
borderType=cv2.BORDER_REFLECT) |
|
|
|
cur_res = (1 - mask) * np.transpose(img, (1, 2, 0)) + mask * inpainted_blurred |
|
cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8') |
|
cur_res = cv2.cvtColor(cur_res, cv2.COLOR_RGB2BGR) |
|
cv2.imwrite(cur_out_fname, cur_res) |
|
|
|
|
|
if __name__ == '__main__': |
|
import argparse |
|
|
|
aparser = argparse.ArgumentParser() |
|
aparser.add_argument('config', type=str, help='Path to evaluation config') |
|
aparser.add_argument('datadir', type=str, |
|
help='Path to folder with images and masks (output of gen_mask_dataset.py)') |
|
aparser.add_argument('predictdir', type=str, |
|
help='Path to folder with predicts (e.g. predict_hifill_baseline.py)') |
|
aparser.add_argument('outpath', type=str, help='Where to put results') |
|
aparser.add_argument('-s', type=float, default=0.1, help='Gaussian blur sigma') |
|
aparser.add_argument('-k', type=int, default=5, help='Kernel size in gaussian blur') |
|
|
|
main(aparser.parse_args()) |
|
|