|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
|
|
class SSIM(torch.nn.Module): |
|
"""SSIM. Modified from: |
|
https://github.com/Po-Hsun-Su/pytorch-ssim/blob/master/pytorch_ssim/__init__.py |
|
""" |
|
|
|
def __init__(self, window_size=11, size_average=True): |
|
super().__init__() |
|
self.window_size = window_size |
|
self.size_average = size_average |
|
self.channel = 1 |
|
self.register_buffer('window', self._create_window(window_size, self.channel)) |
|
|
|
def forward(self, img1, img2): |
|
assert len(img1.shape) == 4 |
|
|
|
channel = img1.size()[1] |
|
|
|
if channel == self.channel and self.window.data.type() == img1.data.type(): |
|
window = self.window |
|
else: |
|
window = self._create_window(self.window_size, channel) |
|
|
|
|
|
window = window.type_as(img1) |
|
|
|
self.window = window |
|
self.channel = channel |
|
|
|
return self._ssim(img1, img2, window, self.window_size, channel, self.size_average) |
|
|
|
def _gaussian(self, window_size, sigma): |
|
gauss = torch.Tensor([ |
|
np.exp(-(x - (window_size // 2)) ** 2 / float(2 * sigma ** 2)) for x in range(window_size) |
|
]) |
|
return gauss / gauss.sum() |
|
|
|
def _create_window(self, window_size, channel): |
|
_1D_window = self._gaussian(window_size, 1.5).unsqueeze(1) |
|
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) |
|
return _2D_window.expand(channel, 1, window_size, window_size).contiguous() |
|
|
|
def _ssim(self, img1, img2, window, window_size, channel, size_average=True): |
|
mu1 = F.conv2d(img1, window, padding=(window_size // 2), groups=channel) |
|
mu2 = F.conv2d(img2, window, padding=(window_size // 2), groups=channel) |
|
|
|
mu1_sq = mu1.pow(2) |
|
mu2_sq = mu2.pow(2) |
|
mu1_mu2 = mu1 * mu2 |
|
|
|
sigma1_sq = F.conv2d( |
|
img1 * img1, window, padding=(window_size // 2), groups=channel) - mu1_sq |
|
sigma2_sq = F.conv2d( |
|
img2 * img2, window, padding=(window_size // 2), groups=channel) - mu2_sq |
|
sigma12 = F.conv2d( |
|
img1 * img2, window, padding=(window_size // 2), groups=channel) - mu1_mu2 |
|
|
|
C1 = 0.01 ** 2 |
|
C2 = 0.03 ** 2 |
|
|
|
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / \ |
|
((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) |
|
|
|
if size_average: |
|
return ssim_map.mean() |
|
|
|
return ssim_map.mean(1).mean(1).mean(1) |
|
|
|
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): |
|
return |
|
|