inoki-giskard commited on
Commit
a89f9d8
·
1 Parent(s): 136af2d

Format and remove duplicated file close

Browse files
Files changed (2) hide show
  1. io_utils.py +14 -16
  2. text_classification_ui_helpers.py +8 -12
io_utils.py CHANGED
@@ -1,14 +1,18 @@
1
  import os
2
  import subprocess
3
- import pipe
4
  import yaml
5
 
 
 
6
  YAML_PATH = "./configs"
7
 
 
8
  class Dumper(yaml.Dumper):
9
  def increase_indent(self, flow=False, *args, **kwargs):
10
  return super().increase_indent(flow=flow, indentless=False)
11
 
 
12
  def get_yaml_path(uid):
13
  if not os.path.exists(YAML_PATH):
14
  os.makedirs(YAML_PATH)
@@ -16,6 +20,7 @@ def get_yaml_path(uid):
16
  os.system(f"cp {YAML_PATH}/config.yaml {YAML_PATH}/{uid}_config.yaml")
17
  return f"{YAML_PATH}/{uid}_config.yaml"
18
 
 
19
  # read scanners from yaml file
20
  # return a list of scanners
21
  def read_scanners(uid):
@@ -23,7 +28,6 @@ def read_scanners(uid):
23
  with open(get_yaml_path(uid), "r") as f:
24
  config = yaml.load(f, Loader=yaml.FullLoader)
25
  scanners = config.get("detectors", [])
26
- f.close()
27
  return scanners
28
 
29
 
@@ -35,7 +39,6 @@ def write_scanners(scanners, uid):
35
  config["detectors"] = scanners
36
  # save scanners to detectors in yaml
37
  yaml.dump(config, f, Dumper=Dumper)
38
- f.close()
39
 
40
 
41
  # read model_type from yaml file
@@ -44,7 +47,6 @@ def read_inference_type(uid):
44
  with open(get_yaml_path(uid), "r") as f:
45
  config = yaml.load(f, Loader=yaml.FullLoader)
46
  inference_type = config.get("inference_type", "")
47
- f.close()
48
  return inference_type
49
 
50
 
@@ -52,13 +54,13 @@ def read_inference_type(uid):
52
  def write_inference_type(use_inference, uid):
53
  with open(get_yaml_path(uid), "r+") as f:
54
  config = yaml.load(f, Loader=yaml.FullLoader)
55
- if use_inference:
56
- config["inference_type"] = "hf_inference_api"
57
- else:
58
- config["inference_type"] = "hf_pipeline"
59
- # save inference_type to inference_type in yaml
60
- yaml.dump(config, f, Dumper=Dumper)
61
- f.close()
62
 
63
  # read column mapping from yaml file
64
  def read_column_mapping(uid):
@@ -67,7 +69,6 @@ def read_column_mapping(uid):
67
  config = yaml.load(f, Loader=yaml.FullLoader)
68
  if config:
69
  column_mapping = config.get("column_mapping", dict())
70
- f.close()
71
  return column_mapping
72
 
73
 
@@ -75,7 +76,6 @@ def read_column_mapping(uid):
75
  def write_column_mapping(mapping, uid):
76
  with open(get_yaml_path(uid), "r") as f:
77
  config = yaml.load(f, Loader=yaml.FullLoader)
78
- f.close()
79
  if config is None:
80
  return
81
  if mapping is None and "column_mapping" in config.keys():
@@ -85,7 +85,6 @@ def write_column_mapping(mapping, uid):
85
  with open(get_yaml_path(uid), "w") as f:
86
  # save column_mapping to column_mapping in yaml
87
  yaml.dump(config, f, Dumper=Dumper)
88
- f.close()
89
 
90
 
91
  # convert column mapping dataframe to json
@@ -114,6 +113,7 @@ def save_job_to_pipe(id, job, lock):
114
  with lock:
115
  pipe.jobs.append((id, job))
116
 
 
117
  def pop_job_from_pipe():
118
  if len(pipe.jobs) == 0:
119
  return
@@ -128,5 +128,3 @@ def pop_job_from_pipe():
128
  stdout=log_file,
129
  stderr=log_file,
130
  )
131
-
132
-
 
1
  import os
2
  import subprocess
3
+
4
  import yaml
5
 
6
+ import pipe
7
+
8
  YAML_PATH = "./configs"
9
 
10
+
11
  class Dumper(yaml.Dumper):
12
  def increase_indent(self, flow=False, *args, **kwargs):
13
  return super().increase_indent(flow=flow, indentless=False)
14
 
15
+
16
  def get_yaml_path(uid):
17
  if not os.path.exists(YAML_PATH):
18
  os.makedirs(YAML_PATH)
 
20
  os.system(f"cp {YAML_PATH}/config.yaml {YAML_PATH}/{uid}_config.yaml")
21
  return f"{YAML_PATH}/{uid}_config.yaml"
22
 
23
+
24
  # read scanners from yaml file
25
  # return a list of scanners
26
  def read_scanners(uid):
 
28
  with open(get_yaml_path(uid), "r") as f:
29
  config = yaml.load(f, Loader=yaml.FullLoader)
30
  scanners = config.get("detectors", [])
 
31
  return scanners
32
 
33
 
 
39
  config["detectors"] = scanners
40
  # save scanners to detectors in yaml
41
  yaml.dump(config, f, Dumper=Dumper)
 
42
 
43
 
44
  # read model_type from yaml file
 
47
  with open(get_yaml_path(uid), "r") as f:
48
  config = yaml.load(f, Loader=yaml.FullLoader)
49
  inference_type = config.get("inference_type", "")
 
50
  return inference_type
51
 
52
 
 
54
  def write_inference_type(use_inference, uid):
55
  with open(get_yaml_path(uid), "r+") as f:
56
  config = yaml.load(f, Loader=yaml.FullLoader)
57
+ if use_inference:
58
+ config["inference_type"] = "hf_inference_api"
59
+ else:
60
+ config["inference_type"] = "hf_pipeline"
61
+ # save inference_type to inference_type in yaml
62
+ yaml.dump(config, f, Dumper=Dumper)
63
+
64
 
65
  # read column mapping from yaml file
66
  def read_column_mapping(uid):
 
69
  config = yaml.load(f, Loader=yaml.FullLoader)
70
  if config:
71
  column_mapping = config.get("column_mapping", dict())
 
72
  return column_mapping
73
 
74
 
 
76
  def write_column_mapping(mapping, uid):
77
  with open(get_yaml_path(uid), "r") as f:
78
  config = yaml.load(f, Loader=yaml.FullLoader)
 
79
  if config is None:
80
  return
81
  if mapping is None and "column_mapping" in config.keys():
 
85
  with open(get_yaml_path(uid), "w") as f:
86
  # save column_mapping to column_mapping in yaml
87
  yaml.dump(config, f, Dumper=Dumper)
 
88
 
89
 
90
  # convert column mapping dataframe to json
 
113
  with lock:
114
  pipe.jobs.append((id, job))
115
 
116
+
117
  def pop_job_from_pipe():
118
  if len(pipe.jobs) == 0:
119
  return
 
128
  stdout=log_file,
129
  stderr=log_file,
130
  )
 
 
text_classification_ui_helpers.py CHANGED
@@ -8,17 +8,10 @@ import datasets
8
  import gradio as gr
9
  from transformers.pipelines import TextClassificationPipeline
10
 
11
- from io_utils import (
12
- read_column_mapping,
13
- save_job_to_pipe,
14
- write_column_mapping,
15
- write_log_to_user_file,
16
- )
17
- from text_classification import (
18
- check_model,
19
- get_example_prediction,
20
- get_labels_and_features_from_dataset,
21
- )
22
  from wordings import CONFIRM_MAPPING_DETAILS_FAIL_RAW
23
 
24
  MAX_LABELS = 20
@@ -28,6 +21,7 @@ HF_REPO_ID = "HF_REPO_ID"
28
  HF_SPACE_ID = "SPACE_ID"
29
  HF_WRITE_TOKEN = "HF_WRITE_TOKEN"
30
 
 
31
  def check_dataset_and_get_config(dataset_id, uid):
32
  try:
33
  write_column_mapping(None, uid) # reset column mapping
@@ -48,7 +42,9 @@ def check_dataset_and_get_split(dataset_id, dataset_config):
48
  pass
49
 
50
 
51
- def write_column_mapping_to_config(dataset_id, dataset_config, dataset_split, uid, *labels):
 
 
52
  # TODO: Substitute 'text' with more features for zero-shot
53
  # we are not using ds features because we only support "text" for now
54
  ds_labels, _ = get_labels_and_features_from_dataset(
 
8
  import gradio as gr
9
  from transformers.pipelines import TextClassificationPipeline
10
 
11
+ from io_utils import (read_column_mapping, save_job_to_pipe,
12
+ write_column_mapping, write_log_to_user_file)
13
+ from text_classification import (check_model, get_example_prediction,
14
+ get_labels_and_features_from_dataset)
 
 
 
 
 
 
 
15
  from wordings import CONFIRM_MAPPING_DETAILS_FAIL_RAW
16
 
17
  MAX_LABELS = 20
 
21
  HF_SPACE_ID = "SPACE_ID"
22
  HF_WRITE_TOKEN = "HF_WRITE_TOKEN"
23
 
24
+
25
  def check_dataset_and_get_config(dataset_id, uid):
26
  try:
27
  write_column_mapping(None, uid) # reset column mapping
 
42
  pass
43
 
44
 
45
+ def write_column_mapping_to_config(
46
+ dataset_id, dataset_config, dataset_split, uid, *labels
47
+ ):
48
  # TODO: Substitute 'text' with more features for zero-shot
49
  # we are not using ds features because we only support "text" for now
50
  ds_labels, _ = get_labels_and_features_from_dataset(