inoki-giskard ZeroCommand commited on
Commit
8092547
·
1 Parent(s): 8dc0e4d

fix-uid-bug-and-add-debug-section (#23)

Browse files

- fix uid reload and show log files (6e92592af2988e14cab1358ac455a313679bef52)
- fix typo (97c6f8e64fe737eb05234ccd746d062163c7fbe9)
- add closing files (a2810d675bbc1566b5a57b99774675ba1dc2d527)
- clean up code (94e80555ec10c4ab120d5abaa3f16508d55330ee)


Co-authored-by: zcy <[email protected]>

app.py CHANGED
@@ -3,6 +3,7 @@ import gradio as gr
3
 
4
  from app_leaderboard import get_demo as get_demo_leaderboard
5
  from app_text_classification import get_demo as get_demo_text_classification
 
6
  from run_jobs import start_process_run_job, stop_thread
7
 
8
  try:
@@ -11,6 +12,8 @@ try:
11
  get_demo_text_classification(demo)
12
  with gr.Tab("Leaderboard"):
13
  get_demo_leaderboard()
 
 
14
 
15
  start_process_run_job()
16
 
 
3
 
4
  from app_leaderboard import get_demo as get_demo_leaderboard
5
  from app_text_classification import get_demo as get_demo_text_classification
6
+ from app_debug import get_demo as get_demo_debug
7
  from run_jobs import start_process_run_job, stop_thread
8
 
9
  try:
 
12
  get_demo_text_classification(demo)
13
  with gr.Tab("Leaderboard"):
14
  get_demo_leaderboard()
15
+ with gr.Tab("Logs(Debug)"):
16
+ get_demo_debug(demo)
17
 
18
  start_process_run_job()
19
 
app_debug.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pipe
3
+ from os import listdir
4
+ from os.path import isfile, join
5
+ LOG_PATH = "./tmp"
6
+ CONFIG_PATH = "./cicd/configs"
7
+
8
+ def get_accordions_of_files(path, files):
9
+ components = []
10
+ for file in files:
11
+ with gr.Row():
12
+ with gr.Accordion(label=file, open=False):
13
+ with gr.Row():
14
+ with open(join(path, file), "r") as f:
15
+ gr.Markdown(f.read())
16
+ return components
17
+
18
+ def get_accordions_of_log_files():
19
+ log_files = [f for f in listdir(LOG_PATH) if isfile(join(LOG_PATH, f)) and f.endswith("_log")]
20
+ return get_accordions_of_files(LOG_PATH, log_files)
21
+
22
+ def get_accordions_of_config_files():
23
+ config_files = [f for f in listdir(CONFIG_PATH) if isfile(join(CONFIG_PATH, f)) and f.endswith(".yaml")]
24
+ return get_accordions_of_files(CONFIG_PATH, config_files)
25
+
26
+ def get_demo(demo):
27
+ with gr.Row():
28
+ # check if jobs is an attribute of pipe
29
+ if hasattr(pipe, "jobs"):
30
+ gr.Markdown(f"current jobs in queue: {len(pipe.jobs)}")
31
+ with gr.Accordion(label="Config Files", open=False):
32
+ config_accordion = get_accordions_of_config_files()
33
+ demo.load(get_accordions_of_config_files, outputs=config_accordion, every=1)
34
+ with gr.Accordion(label="Log Files", open=False):
35
+ log_accordions = get_accordions_of_log_files()
36
+ demo.load(get_accordions_of_log_files, outputs=log_accordions, every=1)
37
+
app_text_classification.py CHANGED
@@ -27,11 +27,10 @@ CONFIG_PATH = "./config.yaml"
27
 
28
 
29
  def get_demo(demo):
30
- uid = uuid.uuid4()
31
  with gr.Row():
32
  gr.Markdown(INTRODUCTION_MD)
33
  uid_label = gr.Textbox(
34
- label="Evaluation ID:", value=uid, visible=False, interactive=False
35
  )
36
  with gr.Row():
37
  model_id_input = gr.Textbox(
@@ -70,19 +69,28 @@ def get_demo(demo):
70
 
71
  with gr.Accordion(label="Model Wrap Advance Config (optional)", open=False):
72
  run_local = gr.Checkbox(value=True, label="Run in this Space")
73
- use_inference = read_inference_type(uid) == "hf_inference_api"
74
- run_inference = gr.Checkbox(value=use_inference, label="Run with Inference API")
 
 
 
 
75
  inference_token = gr.Textbox(value="", label="HF Token for Inference API", visible=False, interactive=True)
76
 
77
  with gr.Accordion(label="Scanner Advance Config (optional)", open=False):
78
- selected = read_scanners(uid)
79
- # currently we remove data_leakage from the default scanners
80
- # Reason: data_leakage barely raises any issues and takes too many requests
81
- # when using inference API, causing rate limit error
82
- scan_config = selected + ["data_leakage"]
83
  scanners = gr.CheckboxGroup(
84
- choices=scan_config, value=selected, label="Scan Settings", visible=True
85
  )
 
 
 
 
 
 
 
 
 
 
86
 
87
  with gr.Row():
88
  run_btn = gr.Button(
@@ -98,7 +106,7 @@ def get_demo(demo):
98
 
99
  dataset_id_input.change(
100
  check_dataset_and_get_config,
101
- inputs=[dataset_id_input, uid_label], outputs=[dataset_config_input]
102
  )
103
 
104
  dataset_config_input.change(
 
27
 
28
 
29
  def get_demo(demo):
 
30
  with gr.Row():
31
  gr.Markdown(INTRODUCTION_MD)
32
  uid_label = gr.Textbox(
33
+ label="Evaluation ID:", value=uuid.uuid4, visible=False, interactive=False
34
  )
35
  with gr.Row():
36
  model_id_input = gr.Textbox(
 
69
 
70
  with gr.Accordion(label="Model Wrap Advance Config (optional)", open=False):
71
  run_local = gr.Checkbox(value=True, label="Run in this Space")
72
+ run_inference = gr.Checkbox(value="False", label="Run with Inference API")
73
+ @gr.on(triggers=[uid_label.change], inputs=[uid_label], outputs=[run_inference])
74
+ def get_run_mode(uid):
75
+ return (
76
+ gr.update(value=read_inference_type(uid) == "hf_inference_api" and not run_local.value)
77
+ )
78
  inference_token = gr.Textbox(value="", label="HF Token for Inference API", visible=False, interactive=True)
79
 
80
  with gr.Accordion(label="Scanner Advance Config (optional)", open=False):
 
 
 
 
 
81
  scanners = gr.CheckboxGroup(
82
+ label="Scan Settings", visible=True
83
  )
84
+ @gr.on(triggers=[uid_label.change], inputs=[uid_label], outputs=[scanners])
85
+ def get_scanners(uid):
86
+ selected = read_scanners(uid)
87
+ # currently we remove data_leakage from the default scanners
88
+ # Reason: data_leakage barely raises any issues and takes too many requests
89
+ # when using inference API, causing rate limit error
90
+ scan_config = selected + ["data_leakage"]
91
+ return (gr.update(
92
+ choices=scan_config, value=selected, label="Scan Settings", visible=True
93
+ ))
94
 
95
  with gr.Row():
96
  run_btn = gr.Button(
 
106
 
107
  dataset_id_input.change(
108
  check_dataset_and_get_config,
109
+ inputs=[dataset_id_input], outputs=[dataset_config_input]
110
  )
111
 
112
  dataset_config_input.change(
io_utils.py CHANGED
@@ -1,6 +1,5 @@
1
  import os
2
  import subprocess
3
- import gradio as gr
4
  import yaml
5
 
6
  import pipe
@@ -28,6 +27,7 @@ def read_scanners(uid):
28
  with open(get_yaml_path(uid), "r") as f:
29
  config = yaml.load(f, Loader=yaml.FullLoader)
30
  scanners = config.get("detectors", [])
 
31
  return scanners
32
 
33
 
@@ -37,9 +37,12 @@ def write_scanners(scanners, uid):
37
  config = yaml.load(f, Loader=yaml.FullLoader)
38
  if config:
39
  config["detectors"] = scanners
 
40
  # save scanners to detectors in yaml
41
  with open(get_yaml_path(uid), "w") as f:
42
  yaml.dump(config, f, Dumper=Dumper)
 
 
43
 
44
 
45
  # read model_type from yaml file
@@ -48,6 +51,7 @@ def read_inference_type(uid):
48
  with open(get_yaml_path(uid), "r") as f:
49
  config = yaml.load(f, Loader=yaml.FullLoader)
50
  inference_type = config.get("inference_type", "")
 
51
  return inference_type
52
 
53
 
@@ -62,9 +66,11 @@ def write_inference_type(use_inference, inference_token, uid):
62
  config["inference_type"] = "hf_pipeline"
63
  # FIXME: A quick and temp fix for missing token
64
  config["inference_token"] = ""
 
65
  # save inference_type to inference_type in yaml
66
  with open(get_yaml_path(uid), "w") as f:
67
  yaml.dump(config, f, Dumper=Dumper)
 
68
 
69
 
70
 
@@ -75,6 +81,7 @@ def read_column_mapping(uid):
75
  config = yaml.load(f, Loader=yaml.FullLoader)
76
  if config:
77
  column_mapping = config.get("column_mapping", dict())
 
78
  return column_mapping
79
 
80
 
@@ -82,6 +89,7 @@ def read_column_mapping(uid):
82
  def write_column_mapping(mapping, uid):
83
  with open(get_yaml_path(uid), "r") as f:
84
  config = yaml.load(f, Loader=yaml.FullLoader)
 
85
 
86
  if config is None:
87
  return
@@ -92,6 +100,8 @@ def write_column_mapping(mapping, uid):
92
 
93
  with open(get_yaml_path(uid), "w") as f:
94
  yaml.dump(config, f, Dumper=Dumper)
 
 
95
 
96
 
97
  # convert column mapping dataframe to json
@@ -114,6 +124,7 @@ def get_logs_file(uid):
114
  def write_log_to_user_file(id, log):
115
  with open(f"./tmp/{id}_log", "a") as f:
116
  f.write(log)
 
117
 
118
 
119
  def save_job_to_pipe(id, job, lock):
 
1
  import os
2
  import subprocess
 
3
  import yaml
4
 
5
  import pipe
 
27
  with open(get_yaml_path(uid), "r") as f:
28
  config = yaml.load(f, Loader=yaml.FullLoader)
29
  scanners = config.get("detectors", [])
30
+ f.close()
31
  return scanners
32
 
33
 
 
37
  config = yaml.load(f, Loader=yaml.FullLoader)
38
  if config:
39
  config["detectors"] = scanners
40
+ f.close()
41
  # save scanners to detectors in yaml
42
  with open(get_yaml_path(uid), "w") as f:
43
  yaml.dump(config, f, Dumper=Dumper)
44
+ f.close()
45
+
46
 
47
 
48
  # read model_type from yaml file
 
51
  with open(get_yaml_path(uid), "r") as f:
52
  config = yaml.load(f, Loader=yaml.FullLoader)
53
  inference_type = config.get("inference_type", "")
54
+ f.close()
55
  return inference_type
56
 
57
 
 
66
  config["inference_type"] = "hf_pipeline"
67
  # FIXME: A quick and temp fix for missing token
68
  config["inference_token"] = ""
69
+ f.close()
70
  # save inference_type to inference_type in yaml
71
  with open(get_yaml_path(uid), "w") as f:
72
  yaml.dump(config, f, Dumper=Dumper)
73
+ f.close()
74
 
75
 
76
 
 
81
  config = yaml.load(f, Loader=yaml.FullLoader)
82
  if config:
83
  column_mapping = config.get("column_mapping", dict())
84
+ f.close()
85
  return column_mapping
86
 
87
 
 
89
  def write_column_mapping(mapping, uid):
90
  with open(get_yaml_path(uid), "r") as f:
91
  config = yaml.load(f, Loader=yaml.FullLoader)
92
+ f.close()
93
 
94
  if config is None:
95
  return
 
100
 
101
  with open(get_yaml_path(uid), "w") as f:
102
  yaml.dump(config, f, Dumper=Dumper)
103
+ f.close()
104
+
105
 
106
 
107
  # convert column mapping dataframe to json
 
124
  def write_log_to_user_file(id, log):
125
  with open(f"./tmp/{id}_log", "a") as f:
126
  f.write(log)
127
+ f.close()
128
 
129
 
130
  def save_job_to_pipe(id, job, lock):
text_classification.py CHANGED
@@ -171,7 +171,6 @@ def infer_output_label_column(
171
  str(i): id2label_mapping[label]
172
  for i, label in zip(id2label.keys(), dataset_labels)
173
  }
174
- # print('>>>>> column_mapping >>>>>', column_mapping)
175
 
176
  id2label_df = pd.DataFrame(
177
  {
 
171
  str(i): id2label_mapping[label]
172
  for i, label in zip(id2label.keys(), dataset_labels)
173
  }
 
174
 
175
  id2label_df = pd.DataFrame(
176
  {
text_classification_ui_helpers.py CHANGED
@@ -23,7 +23,7 @@ HF_SPACE_ID = "SPACE_ID"
23
  HF_WRITE_TOKEN = "HF_WRITE_TOKEN"
24
 
25
 
26
- def check_dataset_and_get_config(dataset_id, uid):
27
  try:
28
  # write_column_mapping(None, uid) # reset column mapping
29
  configs = datasets.get_dataset_config_names(dataset_id)
 
23
  HF_WRITE_TOKEN = "HF_WRITE_TOKEN"
24
 
25
 
26
+ def check_dataset_and_get_config(dataset_id):
27
  try:
28
  # write_column_mapping(None, uid) # reset column mapping
29
  configs = datasets.get_dataset_config_names(dataset_id)