File size: 4,631 Bytes
be473e6
3573a39
 
 
 
be473e6
 
3573a39
be473e6
 
 
 
 
 
 
 
 
 
 
 
3573a39
 
 
be473e6
 
3573a39
be473e6
 
3573a39
be473e6
 
4a85196
be473e6
 
3573a39
be473e6
 
3573a39
be473e6
4a85196
be473e6
 
3573a39
be473e6
8f809e2
be473e6
3573a39
 
 
be473e6
 
3573a39
be473e6
 
 
 
3573a39
 
947816c
 
be473e6
3573a39
 
947816c
 
be473e6
3573a39
 
 
 
be473e6
 
3573a39
be473e6
3573a39
be473e6
 
 
 
 
3573a39
 
be473e6
3573a39
be473e6
 
3573a39
 
 
 
 
 
 
4a85196
3573a39
 
4a85196
3573a39
 
be473e6
3573a39
 
 
 
 
 
be473e6
 
 
3573a39
 
 
 
 
 
 
 
 
 
 
be473e6
 
3573a39
be473e6
4a85196
 
 
 
be473e6
 
 
 
 
3573a39
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import logging

import datasets
import gradio as gr

from fetch_utils import check_dataset_and_get_config, check_dataset_and_get_split


def get_records_from_dataset_repo(dataset_id):
    dataset_config = check_dataset_and_get_config(dataset_id)

    logging.info(f"Dataset {dataset_id} has configs {dataset_config}")
    dataset_split = check_dataset_and_get_split(dataset_id, dataset_config[0])
    logging.info(f"Dataset {dataset_id} has splits {dataset_split}")

    try:
        ds = datasets.load_dataset(dataset_id, dataset_config[0])[dataset_split[0]]
        df = ds.to_pandas()
        return df
    except Exception as e:
        logging.warning(
            f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}"
        )
        return None


def get_model_ids(ds):
    logging.info(f"Dataset {ds} column names: {ds['model_id']}")
    models = ds["model_id"].tolist()
    # return unique elements in the list model_ids
    model_ids = list(set(models))
    model_ids.insert(0, "Any")
    return model_ids


def get_dataset_ids(ds):
    logging.info(f"Dataset {ds} column names: {ds['dataset_id']}")
    datasets = ds["dataset_id"].tolist()
    dataset_ids = list(set(datasets))
    dataset_ids.insert(0, "Any")
    return dataset_ids


def get_types(ds):
    # set types for each column
    types = [str(t) for t in ds.dtypes.to_list()]
    types = [t.replace("object", "markdown") for t in types]
    types = [t.replace("float64", "number") for t in types]
    types = [t.replace("int64", "number") for t in types]
    return types


def get_display_df(df):
    # style all elements in the model_id column
    display_df = df.copy()
    columns = display_df.columns.tolist()
    if "model_id" in columns:
        display_df["model_id"] = display_df["model_id"].apply(
            lambda x: f'<p href="https://huggingface.co./{x}" style="color:blue">πŸ”—{x}</p>'
        )
    # style all elements in the dataset_id column
    if "dataset_id" in columns:
        display_df["dataset_id"] = display_df["dataset_id"].apply(
            lambda x: f'<p href="https://huggingface.co./datasets/{x}" style="color:blue">πŸ”—{x}</p>'
        )
    # style all elements in the report_link column
    if "report_link" in columns:
        display_df["report_link"] = display_df["report_link"].apply(
            lambda x: f'<p href="{x}" style="color:blue">πŸ”—{x}</p>'
        )
    return display_df


def get_demo():
    records = get_records_from_dataset_repo("ZeroCommand/test-giskard-report")

    model_ids = get_model_ids(records)
    dataset_ids = get_dataset_ids(records)

    column_names = records.columns.tolist()
    default_columns = ["model_id", "dataset_id", "total_issues", "report_link"]
    default_df = records[default_columns]  # extract columns selected
    types = get_types(default_df)
    display_df = get_display_df(default_df)  # the styled dataframe to display

    with gr.Row():
        task_select = gr.Dropdown(
            label="Task",
            choices=["text_classification", "tabular"],
            value="text_classification",
            interactive=True,
        )
        model_select = gr.Dropdown(
            label="Model id", choices=model_ids, value=model_ids[0], interactive=True
        )
        dataset_select = gr.Dropdown(
            label="Dataset id", choices=dataset_ids, value=dataset_ids[0], interactive=True
        )

    with gr.Row():
        columns_select = gr.CheckboxGroup(
            label="Show columns",
            choices=column_names,
            value=default_columns,
            interactive=True,
        )

    with gr.Row():
        leaderboard_df = gr.DataFrame(display_df, datatype=types, interactive=False)

    @gr.on(
        triggers=[
            model_select.change,
            dataset_select.change,
            columns_select.change,
            task_select.change,
        ],
        inputs=[model_select, dataset_select, columns_select, task_select],
        outputs=[leaderboard_df],
    )
    def filter_table(model_id, dataset_id, columns, task):
        # filter the table based on task
        df = records[(records["task"] == task)]
        # filter the table based on the model_id and dataset_id
        if model_id and model_id != "Any":
            df = df[(df['model_id'] == model_id)]
        if dataset_id and dataset_id != "Any":
            df = df[(df['dataset_id'] == dataset_id)]

        # filter the table based on the columns
        df = df[columns]
        types = get_types(df)
        display_df = get_display_df(df)
        return gr.update(value=display_df, datatype=types, interactive=False)