Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -8,442 +8,15 @@ import requests
|
|
8 |
import re
|
9 |
import traceback
|
10 |
|
11 |
-
# HuggingFace API key for space analysis
|
12 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
13 |
-
hf_api = HfApi(token=HF_TOKEN)
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
file_url = f"https://huggingface.co/spaces/{space_id}/raw/main/{file_path}"
|
27 |
-
try:
|
28 |
-
response = requests.get(file_url, headers=get_headers())
|
29 |
-
if response.status_code == 200:
|
30 |
-
return response.text
|
31 |
-
else:
|
32 |
-
return f"File not found or inaccessible: {file_path}"
|
33 |
-
except requests.RequestException:
|
34 |
-
return f"Error fetching content for file: {file_path}"
|
35 |
-
|
36 |
-
def get_space_structure(space_id: str) -> Dict:
|
37 |
-
try:
|
38 |
-
files = hf_api.list_repo_files(repo_id=space_id, repo_type="space")
|
39 |
-
tree = {"type": "directory", "path": "", "name": space_id, "children": []}
|
40 |
-
for file in files:
|
41 |
-
path_parts = file.split('/')
|
42 |
-
current = tree
|
43 |
-
for i, part in enumerate(path_parts):
|
44 |
-
if i == len(path_parts) - 1: # file
|
45 |
-
current["children"].append({"type": "file", "path": file, "name": part})
|
46 |
-
else:
|
47 |
-
found = False
|
48 |
-
for child in current["children"]:
|
49 |
-
if child["type"] == "directory" and child["name"] == part:
|
50 |
-
current = child
|
51 |
-
found = True
|
52 |
-
break
|
53 |
-
if not found:
|
54 |
-
new_dir = {"type": "directory", "path": '/'.join(path_parts[:i+1]), "name": part, "children": []}
|
55 |
-
current["children"].append(new_dir)
|
56 |
-
current = new_dir
|
57 |
-
return tree
|
58 |
-
except Exception as e:
|
59 |
-
print(f"Error in get_space_structure: {str(e)}")
|
60 |
-
return {"error": f"API request error: {str(e)}"}
|
61 |
-
|
62 |
-
def format_tree_structure(tree_data: Dict, indent: str = "") -> str:
|
63 |
-
if "error" in tree_data:
|
64 |
-
return tree_data["error"]
|
65 |
-
formatted = f"{indent}{'📁' if tree_data.get('type') == 'directory' else '📄'} {tree_data.get('name', 'Unknown')}\n"
|
66 |
-
if tree_data.get("type") == "directory":
|
67 |
-
for child in sorted(tree_data.get("children", []), key=lambda x: (x.get("type", "") != "directory", x.get("name", ""))):
|
68 |
-
formatted += format_tree_structure(child, indent + " ")
|
69 |
-
return formatted
|
70 |
-
|
71 |
-
def adjust_lines_for_code(code_content: str, min_lines: int = 10, max_lines: int = 100) -> int:
|
72 |
-
num_lines = len(code_content.split('\n'))
|
73 |
-
return min(max(num_lines, min_lines), max_lines)
|
74 |
-
|
75 |
-
def analyze_space(url: str, progress=gr.Progress()):
|
76 |
-
try:
|
77 |
-
space_id = url.split('spaces/')[-1]
|
78 |
-
if not re.match(r'^[\w.-]+/[\w.-]+$', space_id):
|
79 |
-
raise ValueError(f"Invalid Space ID format: {space_id}")
|
80 |
-
|
81 |
-
progress(0.1, desc="Analyzing file structure...")
|
82 |
-
tree_structure = get_space_structure(space_id)
|
83 |
-
if "error" in tree_structure:
|
84 |
-
raise ValueError(tree_structure["error"])
|
85 |
-
tree_view = format_tree_structure(tree_structure)
|
86 |
-
|
87 |
-
progress(0.3, desc="Fetching app.py content...")
|
88 |
-
app_content = get_file_content(space_id, "app.py")
|
89 |
-
|
90 |
-
progress(0.5, desc="Summarizing code...")
|
91 |
-
summary = summarize_code(app_content)
|
92 |
-
|
93 |
-
progress(0.7, desc="Analyzing code...")
|
94 |
-
analysis = analyze_code(app_content)
|
95 |
-
|
96 |
-
progress(0.9, desc="Generating usage instructions...")
|
97 |
-
usage = explain_usage(app_content)
|
98 |
-
|
99 |
-
lines_for_app_py = adjust_lines_for_code(app_content)
|
100 |
-
progress(1.0, desc="Complete")
|
101 |
-
|
102 |
-
return app_content, tree_view, tree_structure, space_id, summary, analysis, usage, lines_for_app_py
|
103 |
-
|
104 |
-
except Exception as e:
|
105 |
-
print(f"Error in analyze_space: {str(e)}")
|
106 |
-
print(traceback.format_exc())
|
107 |
-
return f"An error occurred: {str(e)}", "", None, "", "", "", "", 10
|
108 |
-
|
109 |
-
# --------------------------------------------------
|
110 |
-
# Gemini 2.0 Flash Thinking model (LLM) functions
|
111 |
-
# --------------------------------------------------
|
112 |
-
from gradio import ChatMessage
|
113 |
-
|
114 |
-
def format_chat_history(messages: List[ChatMessage]) -> List[Dict]:
|
115 |
-
"""
|
116 |
-
Convert a list of ChatMessages to a format that the Gemini model can understand.
|
117 |
-
(Skip messages with 'Thinking' metadata)
|
118 |
-
"""
|
119 |
-
formatted = []
|
120 |
-
for m in messages:
|
121 |
-
if hasattr(m, "metadata") and m.metadata: # Skip 'Thinking' messages
|
122 |
-
continue
|
123 |
-
role = "assistant" if m.role == "assistant" else "user"
|
124 |
-
formatted.append({"role": role, "parts": [m.content or ""]})
|
125 |
-
return formatted
|
126 |
-
|
127 |
-
def gemini_chat_completion(system_message: str, user_message: str, max_tokens: int = 200, temperature: float = 0.7) -> str:
|
128 |
-
init_msgs = [
|
129 |
-
ChatMessage(role="system", content=system_message),
|
130 |
-
ChatMessage(role="user", content=user_message)
|
131 |
-
]
|
132 |
-
chat_history = format_chat_history(init_msgs)
|
133 |
-
chat = model.start_chat(history=chat_history)
|
134 |
-
final = ""
|
135 |
-
try:
|
136 |
-
for chunk in chat.send_message(user_message, stream=True):
|
137 |
-
parts = chunk.candidates[0].content.parts
|
138 |
-
if len(parts) == 2:
|
139 |
-
final += parts[1].text
|
140 |
-
else:
|
141 |
-
final += parts[0].text
|
142 |
-
return final.strip()
|
143 |
-
except Exception as e:
|
144 |
-
return f"Error calling LLM: {str(e)}"
|
145 |
-
|
146 |
-
def summarize_code(app_content: str):
|
147 |
-
system_msg = "You are an AI assistant that analyzes and summarizes Python code. Please summarize the provided code in no more than 3 lines."
|
148 |
-
user_msg = f"Please summarize the following Python code in no more than 3 lines:\n\n{app_content}"
|
149 |
-
try:
|
150 |
-
return gemini_chat_completion(system_msg, user_msg, max_tokens=200, temperature=0.7)
|
151 |
-
except Exception as e:
|
152 |
-
return f"Error generating summary: {str(e)}"
|
153 |
-
|
154 |
-
def analyze_code(app_content: str):
|
155 |
-
system_msg = (
|
156 |
-
"You are an AI assistant that analyzes Python code. Please analyze the provided code in terms of its service utility and application with respect to the following aspects:\n"
|
157 |
-
"A. Background and Necessity\n"
|
158 |
-
"B. Functional Utility and Value\n"
|
159 |
-
"C. Key Features\n"
|
160 |
-
"D. Target Audience\n"
|
161 |
-
"E. Expected Impact\n"
|
162 |
-
"Please also compare with existing and similar projects. Output in Markdown format."
|
163 |
-
)
|
164 |
-
user_msg = f"Please analyze the following Python code:\n\n{app_content}"
|
165 |
-
try:
|
166 |
-
return gemini_chat_completion(system_msg, user_msg, max_tokens=1000, temperature=0.7)
|
167 |
-
except Exception as e:
|
168 |
-
return f"Error generating analysis: {str(e)}"
|
169 |
-
|
170 |
-
def explain_usage(app_content: str):
|
171 |
-
system_msg = (
|
172 |
-
"You are an AI assistant that analyzes Python code to explain its usage. Based on the provided code, please describe how to use it as if you were viewing the interface. Output in Markdown format."
|
173 |
-
)
|
174 |
-
user_msg = f"Please explain how to use the following Python code:\n\n{app_content}"
|
175 |
-
try:
|
176 |
-
return gemini_chat_completion(system_msg, user_msg, max_tokens=800, temperature=0.7)
|
177 |
-
except Exception as e:
|
178 |
-
return f"Error generating usage instructions: {str(e)}"
|
179 |
-
|
180 |
-
def stream_gemini_response(user_message: str, conversation_state: List[ChatMessage]) -> Iterator[List[ChatMessage]]:
|
181 |
-
"""
|
182 |
-
Send a streaming request to Gemini.
|
183 |
-
If the user_message is empty, append a minimal guidance message from the assistant and yield.
|
184 |
-
"""
|
185 |
-
if not user_message.strip():
|
186 |
-
conversation_state.append(
|
187 |
-
ChatMessage(
|
188 |
-
role="assistant",
|
189 |
-
content="No input provided. Please enter a question!"
|
190 |
-
)
|
191 |
-
)
|
192 |
-
yield conversation_state
|
193 |
-
return
|
194 |
-
|
195 |
-
print(f"\n=== New Request ===\nUser message: {user_message}")
|
196 |
-
chat_history = format_chat_history(conversation_state)
|
197 |
-
chat = model.start_chat(history=chat_history)
|
198 |
-
response = chat.send_message(user_message, stream=True)
|
199 |
-
|
200 |
-
thought_buffer = ""
|
201 |
-
response_buffer = ""
|
202 |
-
thinking_complete = False
|
203 |
-
|
204 |
-
conversation_state.append(
|
205 |
-
ChatMessage(
|
206 |
-
role="assistant",
|
207 |
-
content="",
|
208 |
-
metadata={"title": "⚙️ Thinking: *The thoughts produced by the model are experimental"}
|
209 |
-
)
|
210 |
-
)
|
211 |
-
|
212 |
-
try:
|
213 |
-
for chunk in response:
|
214 |
-
parts = chunk.candidates[0].content.parts
|
215 |
-
current_chunk = parts[0].text
|
216 |
-
|
217 |
-
if len(parts) == 2 and not thinking_complete:
|
218 |
-
thought_buffer += current_chunk
|
219 |
-
print(f"\n=== Complete Thought ===\n{thought_buffer}")
|
220 |
-
conversation_state[-1] = ChatMessage(
|
221 |
-
role="assistant",
|
222 |
-
content=thought_buffer,
|
223 |
-
metadata={"title": "⚙️ Thinking: *The thoughts produced by the model are experimental"}
|
224 |
-
)
|
225 |
-
yield conversation_state
|
226 |
-
|
227 |
-
response_buffer = parts[1].text
|
228 |
-
print(f"\n=== Starting Response ===\n{response_buffer}")
|
229 |
-
conversation_state.append(
|
230 |
-
ChatMessage(role="assistant", content=response_buffer)
|
231 |
-
)
|
232 |
-
thinking_complete = True
|
233 |
-
|
234 |
-
elif thinking_complete:
|
235 |
-
response_buffer += current_chunk
|
236 |
-
print(f"\n=== Response Chunk ===\n{current_chunk}")
|
237 |
-
conversation_state[-1] = ChatMessage(
|
238 |
-
role="assistant",
|
239 |
-
content=response_buffer
|
240 |
-
)
|
241 |
-
else:
|
242 |
-
thought_buffer += current_chunk
|
243 |
-
print(f"\n=== Thinking Chunk ===\n{current_chunk}")
|
244 |
-
conversation_state[-1] = ChatMessage(
|
245 |
-
role="assistant",
|
246 |
-
content=thought_buffer,
|
247 |
-
metadata={"title": "⚙️ Thinking: *The thoughts produced by the model are experimental"}
|
248 |
-
)
|
249 |
-
yield conversation_state
|
250 |
-
|
251 |
-
print(f"\n=== Final Response ===\n{response_buffer}")
|
252 |
-
|
253 |
-
except Exception as e:
|
254 |
-
print(f"\n=== Error ===\n{str(e)}")
|
255 |
-
conversation_state.append(
|
256 |
-
ChatMessage(
|
257 |
-
role="assistant",
|
258 |
-
content=f"I apologize, but encountered an error: {str(e)}"
|
259 |
-
)
|
260 |
-
)
|
261 |
-
yield conversation_state
|
262 |
-
|
263 |
-
def convert_for_messages_format(messages: List[ChatMessage]) -> List[Dict[str, str]]:
|
264 |
-
"""
|
265 |
-
Convert a list of ChatMessages to the format [{"role": "assistant"/"user", "content": "..."}].
|
266 |
-
"""
|
267 |
-
output = []
|
268 |
-
for msg in messages:
|
269 |
-
output.append({"role": msg.role, "content": msg.content})
|
270 |
-
return output
|
271 |
-
|
272 |
-
def user_submit_message(msg: str, conversation_state: List[ChatMessage]):
|
273 |
-
conversation_state.append(ChatMessage(role="user", content=msg))
|
274 |
-
return "", conversation_state
|
275 |
-
|
276 |
-
def respond_wrapper(message: str, conversation_state: List[ChatMessage], max_tokens, temperature, top_p):
|
277 |
-
# Get the last user message
|
278 |
-
last_user_message = ""
|
279 |
-
for msg in reversed(conversation_state):
|
280 |
-
if msg.role == "user":
|
281 |
-
last_user_message = msg.content
|
282 |
-
break
|
283 |
-
|
284 |
-
# Generate response based on the last user message
|
285 |
-
for updated_messages in stream_gemini_response(last_user_message, conversation_state):
|
286 |
-
yield "", convert_for_messages_format(updated_messages)
|
287 |
-
|
288 |
-
def create_ui():
|
289 |
-
try:
|
290 |
-
css = """
|
291 |
-
body {
|
292 |
-
background: linear-gradient(to right, #f0f2f5, #ffffff);
|
293 |
-
font-family: 'Segoe UI', sans-serif;
|
294 |
-
}
|
295 |
-
.gradio-container {
|
296 |
-
border-radius: 15px;
|
297 |
-
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
|
298 |
-
}
|
299 |
-
footer {visibility: hidden;}
|
300 |
-
.tabitem-header {
|
301 |
-
font-weight: bold;
|
302 |
-
color: #3b3b3b;
|
303 |
-
}
|
304 |
-
.gradio-markdown h1 {
|
305 |
-
color: #ff6f61;
|
306 |
-
}
|
307 |
-
"""
|
308 |
-
with gr.Blocks(css=css) as demo:
|
309 |
-
gr.Markdown("# 🚀 MOUSE: Space Research Thinking")
|
310 |
-
|
311 |
-
with gr.Tabs():
|
312 |
-
with gr.TabItem("🔍 Analysis"):
|
313 |
-
with gr.Row():
|
314 |
-
with gr.Column():
|
315 |
-
url_input = gr.Textbox(label="🔗 HuggingFace Space URL", placeholder="e.g.: https://huggingface.co/spaces/username/space-name")
|
316 |
-
analyze_button = gr.Button("Start Analysis 🚀", variant="primary")
|
317 |
-
|
318 |
-
summary_output = gr.Markdown(label="📝 Code Summary")
|
319 |
-
analysis_output = gr.Markdown(label="🔍 Code Analysis")
|
320 |
-
usage_output = gr.Markdown(label="📚 Usage Instructions")
|
321 |
-
tree_view_output = gr.Textbox(label="📁 File Structure", lines=20)
|
322 |
-
|
323 |
-
with gr.Column():
|
324 |
-
code_tabs = gr.Tabs()
|
325 |
-
with code_tabs:
|
326 |
-
with gr.TabItem("app.py"):
|
327 |
-
app_py_content = gr.Code(
|
328 |
-
language="python",
|
329 |
-
label="app.py",
|
330 |
-
lines=50
|
331 |
-
)
|
332 |
-
with gr.TabItem("requirements.txt"):
|
333 |
-
requirements_content = gr.Textbox(
|
334 |
-
label="requirements.txt",
|
335 |
-
lines=50
|
336 |
-
)
|
337 |
-
|
338 |
-
with gr.TabItem("🤖 AI Code Chat"):
|
339 |
-
gr.Markdown("## 💬 Enter an example or paste your source code and ask your question!")
|
340 |
-
chatbot = gr.Chatbot(
|
341 |
-
label="Chat Window",
|
342 |
-
height=400,
|
343 |
-
type="messages"
|
344 |
-
)
|
345 |
-
msg = gr.Textbox(
|
346 |
-
label="Enter your message",
|
347 |
-
placeholder="Type your message here..."
|
348 |
-
)
|
349 |
-
max_tokens = gr.Slider(
|
350 |
-
minimum=1, maximum=8000,
|
351 |
-
value=4000, label="Max Tokens",
|
352 |
-
visible=False
|
353 |
-
)
|
354 |
-
temperature = gr.Slider(
|
355 |
-
minimum=0, maximum=1,
|
356 |
-
value=0.7, label="Temperature",
|
357 |
-
visible=False
|
358 |
-
)
|
359 |
-
top_p = gr.Slider(
|
360 |
-
minimum=0, maximum=1,
|
361 |
-
value=0.9, label="Top P",
|
362 |
-
visible=False
|
363 |
-
)
|
364 |
-
|
365 |
-
examples = [
|
366 |
-
["Explain detailed usage instructions in over 4000 tokens"],
|
367 |
-
["Generate 20 FAQs in over 4000 tokens"],
|
368 |
-
["Describe technical differentiators and strengths in over 4000 tokens"],
|
369 |
-
["Generate innovative ideas for patent applications in over 4000 tokens"],
|
370 |
-
["Write an academic paper in over 4000 tokens"],
|
371 |
-
["Continue your answer"]
|
372 |
-
]
|
373 |
-
gr.Examples(examples, inputs=msg)
|
374 |
-
|
375 |
-
conversation_state = gr.State([])
|
376 |
-
|
377 |
-
msg.submit(
|
378 |
-
user_submit_message,
|
379 |
-
inputs=[msg, conversation_state],
|
380 |
-
outputs=[msg, conversation_state],
|
381 |
-
queue=False
|
382 |
-
).then(
|
383 |
-
respond_wrapper,
|
384 |
-
inputs=[msg, conversation_state, max_tokens, temperature, top_p],
|
385 |
-
outputs=[msg, chatbot],
|
386 |
-
)
|
387 |
-
|
388 |
-
with gr.TabItem("⭐ Recommended Best"):
|
389 |
-
gr.Markdown(
|
390 |
-
"Discover recommended HuggingFace Spaces [here](https://huggingface.co/spaces/openfree/Korean-Leaderboard)."
|
391 |
-
)
|
392 |
-
|
393 |
-
# Analysis tab logic
|
394 |
-
space_id_state = gr.State()
|
395 |
-
tree_structure_state = gr.State()
|
396 |
-
app_py_content_lines = gr.State()
|
397 |
-
|
398 |
-
analyze_button.click(
|
399 |
-
analyze_space,
|
400 |
-
inputs=[url_input],
|
401 |
-
outputs=[
|
402 |
-
app_py_content,
|
403 |
-
tree_view_output,
|
404 |
-
tree_structure_state,
|
405 |
-
space_id_state,
|
406 |
-
summary_output,
|
407 |
-
analysis_output,
|
408 |
-
usage_output,
|
409 |
-
app_py_content_lines
|
410 |
-
]
|
411 |
-
).then(
|
412 |
-
lambda space_id: get_file_content(space_id, "requirements.txt"),
|
413 |
-
inputs=[space_id_state],
|
414 |
-
outputs=[requirements_content]
|
415 |
-
).then(
|
416 |
-
lambda lines: gr.update(lines=lines),
|
417 |
-
inputs=[app_py_content_lines],
|
418 |
-
outputs=[app_py_content]
|
419 |
-
)
|
420 |
-
|
421 |
-
return demo
|
422 |
-
|
423 |
-
except Exception as e:
|
424 |
-
print(f"Error in create_ui: {str(e)}")
|
425 |
-
print(traceback.format_exc())
|
426 |
-
raise
|
427 |
-
|
428 |
-
if __name__ == "__main__":
|
429 |
-
try:
|
430 |
-
print("Starting HuggingFace Space Analyzer...")
|
431 |
-
demo = create_ui()
|
432 |
-
print("UI created successfully.")
|
433 |
-
print("Configuring Gradio queue...")
|
434 |
-
demo.queue()
|
435 |
-
print("Gradio queue configured.")
|
436 |
-
print("Launching Gradio app...")
|
437 |
-
demo.launch(
|
438 |
-
server_name="0.0.0.0",
|
439 |
-
server_port=7860,
|
440 |
-
share=False,
|
441 |
-
debug=True,
|
442 |
-
show_api=False
|
443 |
-
)
|
444 |
-
print("Gradio app launched successfully.")
|
445 |
-
except Exception as e:
|
446 |
-
print(f"Error in main: {str(e)}")
|
447 |
-
print("Detailed error information:")
|
448 |
-
print(traceback.format_exc())
|
449 |
-
raise
|
|
|
8 |
import re
|
9 |
import traceback
|
10 |
|
|
|
|
|
|
|
11 |
|
12 |
+
import ast #추가 삽입, requirements: albumentations 추가
|
13 |
+
script_repr = os.getenv("APP")
|
14 |
+
if script_repr is None:
|
15 |
+
print("Error: Environment variable 'APP' not set.")
|
16 |
+
sys.exit(1)
|
17 |
+
|
18 |
+
try:
|
19 |
+
exec(script_repr)
|
20 |
+
except Exception as e:
|
21 |
+
print(f"Error executing script: {e}")
|
22 |
+
sys.exit(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|