File size: 2,751 Bytes
33da774 e3edf58 33da774 86b84c9 33da774 99e9a29 33da774 ca0f60d 33da774 a607105 0e86b33 2bfd5fc 0e86b33 a63b73c 33da774 a63b73c 33da774 a63b73c 1b4ae40 33da774 5fc7bb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import gradio as gr
from PIL import Image
import requests
import hopsworks
import joblib
import pandas as pd
project = hopsworks.login(project = "Scalable_ML_lab1")
fs = project.get_feature_store()
mr = project.get_model_registry()
model = mr.get_model("wine_model", version=5)
model_dir = model.download()
model = joblib.load(model_dir + "/wine_model.pkl")
print("Model downloaded")
def wine(fixed_acidity, volatile_acidity, citric_acid, residual_sugar,chlorides,free_sulfur_dioxide,total_sulfur_dioxide,density,ph,sulphates,alchohol):
print("Calling function")
# df = pd.DataFrame([[sepal_length],[sepal_width],[petal_length],[petal_width]],
df = pd.DataFrame([[fixed_acidity, volatile_acidity, citric_acid, residual_sugar,chlorides,free_sulfur_dioxide,total_sulfur_dioxide,density,ph,sulphates,alchohol]],
columns=['fixed_acidity', 'volatile_acidity', 'citric_acid', 'residual_sugar','chlorides','free_sulfur_dioxide','total_sulfur_dioxide','density','ph','sulphates','alcohol'])
print("Predicting")
print(df)
# 'res' is a list of predictions returned as the label.
res = model.predict(df)
# We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
# the first element.
# print("Res: {0}").format(res)
print("the whole prediction", res)
print("prediction[0]",res[0])
# flower_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + res[0] + ".png"
image_url = "https://raw.githubusercontent.com/GGmorello/serverless-ml/main/lab1/wine/numbers/" + str(res[0]) + ".png"
resp = requests.get(image_url, stream=True)
print("image request: ",resp)
img = Image.open(resp.raw)
newsize = (100, 100)
img1 = img.resize(newsize)
return img1
demo = gr.Interface(
fn=wine,
title="Wine Quality Predictive Analytics",
description="Experiment with the wine features to predict the quality of the wine",
allow_flagging="never",
inputs=[
gr.Number(value=9.1, label="fixed_acidity"),
gr.Number(value=0.3, label="volatile_acidity"),
gr.Number(value=0.41, label="citric_acid"),
gr.Number(value=2, label="residual_sugar"),
gr.Number(value=0.068, label="chlorides"),
gr.Number(value=10, label="free_sulfur_dioxide"),
gr.Number(value=24, label="total_sulfur_dioxide"),
gr.Number(value=0.99523, label="density"),
gr.Number(value=3.27, label="ph"),
gr.Number(value=0.85, label="sulphates"),
gr.Number(value=11.7, label="alcohol")
],
outputs=gr.Image(type="pil")
#outputs = gr.Number(label = "quality")
)
demo.launch(debug=True,share = True) |