File size: 6,266 Bytes
57cd4b7
e448014
f2c9828
 
e448014
 
f2c9828
 
3be0591
57cd4b7
 
 
f2c9828
804c57e
 
 
 
 
 
 
 
 
 
 
f2c9828
0cb0031
ed379da
 
b8f09a7
839677f
 
3be0591
0cb0031
b8f09a7
0cb0031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
839677f
b8f09a7
839677f
ed379da
839677f
4b0474c
839677f
 
 
 
ed379da
839677f
 
 
 
 
 
 
0cb0031
ed379da
 
839677f
4b0474c
 
 
 
839677f
0cb0031
839677f
 
ed379da
e6440c9
839677f
 
 
e6440c9
4b0474c
839677f
 
 
4b0474c
839677f
4b0474c
b8f09a7
839677f
b8f09a7
839677f
 
4b0474c
b8f09a7
839677f
ed379da
839677f
4b0474c
0cb0031
4b0474c
 
e6440c9
 
 
 
4b0474c
839677f
 
ed379da
839677f
 
 
 
ed379da
839677f
 
 
ed379da
839677f
ed379da
839677f
 
 
 
ed379da
839677f
 
 
 
 
ed379da
839677f
 
f2c9828
 
 
b8f09a7
f2c9828
e448014
b8f09a7
e448014
3989c90
e448014
 
b8f09a7
 
804c57e
 
7157223
e448014
 
b8f09a7
e448014
804c57e
 
0cb0031
 
 
 
 
e448014
b8f09a7
793503d
 
 
 
316bb64
0cb0031
793503d
f2c9828
 
 
b8f09a7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import os
import shutil
import subprocess

import gradio as gr

from huggingface_hub import create_repo, HfApi
from huggingface_hub import snapshot_download
from huggingface_hub import whoami
from huggingface_hub import ModelCard

from textwrap import dedent

LLAMA_LIKE_ARCHS = ["MistralForCausalLM", "LlamaForCausalLM"]

def script_to_use(model_id, api):
    info = api.model_info(model_id)
    if info.config is None:
        return None
    arch = info.config.get("architectures", None)
    if arch is None:
        return None
    arch = arch[0]
    return "convert.py" if arch in LLAMA_LIKE_ARCHS else "convert-hf-to-gguf.py"

def process_model(model_id, q_method, hf_token, private_repo):
    model_name = model_id.split('/')[-1]
    fp16 = f"{model_name}/{model_name.lower()}.fp16.bin"

    try:
        api = HfApi(token=hf_token)

        dl_pattern = ["*.md", "*.json", "*.model"]

        pattern = (
            "*.safetensors"
            if any(
                file.path.endswith(".safetensors")
                for file in api.list_repo_tree(
                    repo_id=model_id,
                    recursive=True,
                )
            )
            else "*.bin"
        )

        dl_pattern += pattern

        snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, token=hf_token, allow_patterns=dl_pattern)
        print("Model downloaded successully!")

        conversion_script = script_to_use(model_id, api)
        fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}"
        result = subprocess.run(fp16_conversion, shell=True, capture_output=True)
        print(result)
        if result.returncode != 0:
            raise Exception(f"Error converting to fp16: {result.stderr}")
        print("Model converted to fp16 successully!")

        qtype = f"{model_name}/{model_name.lower()}.{q_method.upper()}.gguf"
        quantise_ggml = f"./llama.cpp/quantize {fp16} {qtype} {q_method}"
        result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
        if result.returncode != 0:
            raise Exception(f"Error quantizing: {result.stderr}")
        print("Quantised successfully!")

        # Create empty repo
        new_repo_url = api.create_repo(repo_id=f"{model_name}-{q_method}-GGUF", exist_ok=True, private=private_repo)
        new_repo_id = new_repo_url.repo_id
        print("Repo created successfully!", new_repo_url)

        try:
            card = ModelCard.load(model_id,)
        except:
            card = ModelCard("")
        card.data.tags = ["llama-cpp"] if card.data.tags is None else card.data.tags + ["llama-cpp"]
        card.data.tags += ["gguf-my-repo"]
        card.text = dedent(
            f"""
            # {new_repo_id}
            This model was converted to GGUF format from [`{model_id}`](https://huggingface.co./{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co./spaces/ggml-org/gguf-my-repo) space.
            Refer to the [original model card](https://huggingface.co./{model_id}) for more details on the model.
            ## Use with llama.cpp

            Install llama.cpp through brew.

            ```bash
            brew install ggerganov/ggerganov/llama.cpp
            ```
            Invoke the llama.cpp server or the CLI.

            CLI:

            ```bash
            llama-cli --hf-repo {new_repo_id} --model {qtype.split("/")[-1]} -p "The meaning to life and the universe is"
            ```

            Server:

            ```bash
            llama-server --hf-repo {new_repo_id} --model {qtype.split("/")[-1]} -c 2048
            ```

            Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

            ```
            git clone https://github.com/ggerganov/llama.cpp && \
            cd llama.cpp && \
            make && \
            ./main -m {qtype.split("/")[-1]} -n 128
            ```
            """
        )
        card.save(os.path.join(model_name, "README-new.md"))

        api.upload_file(
            path_or_fileobj=qtype,
            path_in_repo=qtype.split("/")[-1],
            repo_id=new_repo_id,
        )

        api.upload_file(
            path_or_fileobj=f"{model_name}/README-new.md",
            path_in_repo="README.md",
            repo_id=new_repo_id,
        )
        print("Uploaded successfully!")

        return (
            f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>',
            "llama.png",
        )
    except Exception as e:
        return (f"Error: {e}", "error.png")
    finally:
        shutil.rmtree(model_name, ignore_errors=True)
        print("Folder cleaned up successfully!")


# Create Gradio interface
iface = gr.Interface(
    fn=process_model,
    inputs=[
        gr.Textbox(
            lines=1,
            label="Hub Model ID",
            info="Repo/model",
        ),
        gr.Dropdown(
            ["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
            label="Quantization Method",
            info="GGML quantisation type",
            value="Q4_K_M",
            filterable=False
        ),
        gr.Textbox(
            lines=1,
            label="HF Write Token",
            info="https://hf.co/settings/token",
            type="password",
        ),
        gr.Checkbox(
            value=False,
            label="Private Repo",
            info="Create a private repo under your username."
        )
    ],
    outputs=[
        gr.Markdown(label="output"),
        gr.Image(show_label=False),
    ],
    title="Create your own GGUF Quants, blazingly fast ⚡!",
    description="The space takes an HF repo as an input, quantises it and creates a Public repo containing the selected quant under your HF user namespace. You need to specify a write token obtained in https://hf.co/settings/tokens.",
    article="<p>Find your write token at <a href='https://huggingface.co./settings/tokens' target='_blank'>token settings</a></p>",
)

# Launch the interface
iface.launch(debug=True)