IDM-VITON-MM / inference.py
parokshsaxena
adding rest of the files
a37d690
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
from typing import Any, Callable, Dict, List, Optional, Tuple, Union, Literal
from ip_adapter.ip_adapter import Resampler
import argparse
import logging
import os
import torch.utils.data as data
import torchvision
import json
import accelerate
import numpy as np
import torch
from PIL import Image
import torch.nn.functional as F
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from packaging import version
from torchvision import transforms
import diffusers
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, StableDiffusionXLControlNetInpaintPipeline
from transformers import AutoTokenizer, PretrainedConfig,CLIPImageProcessor, CLIPVisionModelWithProjection,CLIPTextModelWithProjection, CLIPTextModel, CLIPTokenizer
from diffusers.utils.import_utils import is_xformers_available
from src.unet_hacked_tryon import UNet2DConditionModel
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
logger = get_logger(__name__, log_level="INFO")
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument("--pretrained_model_name_or_path",type=str,default= "yisol/IDM-VTON",required=False,)
parser.add_argument("--width",type=int,default=768,)
parser.add_argument("--height",type=int,default=1024,)
parser.add_argument("--num_inference_steps",type=int,default=30,)
parser.add_argument("--output_dir",type=str,default="result",)
parser.add_argument("--unpaired",action="store_true",)
parser.add_argument("--data_dir",type=str,default="/home/omnious/workspace/yisol/Dataset/zalando")
parser.add_argument("--seed", type=int, default=42,)
parser.add_argument("--test_batch_size", type=int, default=2,)
parser.add_argument("--guidance_scale",type=float,default=2.0,)
parser.add_argument("--mixed_precision",type=str,default=None,choices=["no", "fp16", "bf16"],)
parser.add_argument("--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers.")
args = parser.parse_args()
return args
def pil_to_tensor(images):
images = np.array(images).astype(np.float32) / 255.0
images = torch.from_numpy(images.transpose(2, 0, 1))
return images
class VitonHDTestDataset(data.Dataset):
def __init__(
self,
dataroot_path: str,
phase: Literal["train", "test"],
order: Literal["paired", "unpaired"] = "paired",
size: Tuple[int, int] = (512, 384),
):
super(VitonHDTestDataset, self).__init__()
self.dataroot = dataroot_path
self.phase = phase
self.height = size[0]
self.width = size[1]
self.size = size
self.transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
self.toTensor = transforms.ToTensor()
with open(
os.path.join(dataroot_path, phase, "vitonhd_" + phase + "_tagged.json"), "r"
) as file1:
data1 = json.load(file1)
annotation_list = [
"sleeveLength",
"neckLine",
"item",
]
self.annotation_pair = {}
for k, v in data1.items():
for elem in v:
annotation_str = ""
for template in annotation_list:
for tag in elem["tag_info"]:
if (
tag["tag_name"] == template
and tag["tag_category"] is not None
):
annotation_str += tag["tag_category"]
annotation_str += " "
self.annotation_pair[elem["file_name"]] = annotation_str
self.order = order
self.toTensor = transforms.ToTensor()
im_names = []
c_names = []
dataroot_names = []
if phase == "train":
filename = os.path.join(dataroot_path, f"{phase}_pairs.txt")
else:
filename = os.path.join(dataroot_path, f"{phase}_pairs.txt")
with open(filename, "r") as f:
for line in f.readlines():
if phase == "train":
im_name, _ = line.strip().split()
c_name = im_name
else:
if order == "paired":
im_name, _ = line.strip().split()
c_name = im_name
else:
im_name, c_name = line.strip().split()
im_names.append(im_name)
c_names.append(c_name)
dataroot_names.append(dataroot_path)
self.im_names = im_names
self.c_names = c_names
self.dataroot_names = dataroot_names
self.clip_processor = CLIPImageProcessor()
def __getitem__(self, index):
c_name = self.c_names[index]
im_name = self.im_names[index]
if c_name in self.annotation_pair:
cloth_annotation = self.annotation_pair[c_name]
else:
cloth_annotation = "shirts"
cloth = Image.open(os.path.join(self.dataroot, self.phase, "cloth", c_name))
im_pil_big = Image.open(
os.path.join(self.dataroot, self.phase, "image", im_name)
).resize((self.width,self.height))
image = self.transform(im_pil_big)
mask = Image.open(os.path.join(self.dataroot, self.phase, "agnostic-mask", im_name.replace('.jpg','_mask.png'))).resize((self.width,self.height))
mask = self.toTensor(mask)
mask = mask[:1]
mask = 1-mask
im_mask = image * mask
pose_img = Image.open(
os.path.join(self.dataroot, self.phase, "image-densepose", im_name)
)
pose_img = self.transform(pose_img) # [-1,1]
result = {}
result["c_name"] = c_name
result["im_name"] = im_name
result["image"] = image
result["cloth_pure"] = self.transform(cloth)
result["cloth"] = self.clip_processor(images=cloth, return_tensors="pt").pixel_values
result["inpaint_mask"] =1-mask
result["im_mask"] = im_mask
result["caption_cloth"] = "a photo of " + cloth_annotation
result["caption"] = "model is wearing a " + cloth_annotation
result["pose_img"] = pose_img
return result
def __len__(self):
# model images + cloth image
return len(self.im_names)
def main():
args = parse_args()
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir)
accelerator = Accelerator(
mixed_precision=args.mixed_precision,
project_config=accelerator_project_config,
)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
weight_dtype = torch.float16
# if accelerator.mixed_precision == "fp16":
# weight_dtype = torch.float16
# args.mixed_precision = accelerator.mixed_precision
# elif accelerator.mixed_precision == "bf16":
# weight_dtype = torch.bfloat16
# args.mixed_precision = accelerator.mixed_precision
# Load scheduler, tokenizer and models.
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="vae",
torch_dtype=torch.float16,
)
unet = UNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="unet",
torch_dtype=torch.float16,
)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="image_encoder",
torch_dtype=torch.float16,
)
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="unet_encoder",
torch_dtype=torch.float16,
)
text_encoder_one = CLIPTextModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="text_encoder",
torch_dtype=torch.float16,
)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="text_encoder_2",
torch_dtype=torch.float16,
)
tokenizer_one = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=None,
use_fast=False,
)
tokenizer_two = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer_2",
revision=None,
use_fast=False,
)
# Freeze vae and text_encoder and set unet to trainable
unet.requires_grad_(False)
vae.requires_grad_(False)
image_encoder.requires_grad_(False)
UNet_Encoder.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
UNet_Encoder.to(accelerator.device, weight_dtype)
unet.eval()
UNet_Encoder.eval()
if args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
import xformers
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warn(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co./docs/diffusers/main/en/optimization/xformers for more details."
)
unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
test_dataset = VitonHDTestDataset(
dataroot_path=args.data_dir,
phase="test",
order="unpaired" if args.unpaired else "paired",
size=(args.height, args.width),
)
test_dataloader = torch.utils.data.DataLoader(
test_dataset,
shuffle=False,
batch_size=args.test_batch_size,
num_workers=4,
)
pipe = TryonPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=unet,
vae=vae,
feature_extractor= CLIPImageProcessor(),
text_encoder = text_encoder_one,
text_encoder_2 = text_encoder_two,
tokenizer = tokenizer_one,
tokenizer_2 = tokenizer_two,
scheduler = noise_scheduler,
image_encoder=image_encoder,
torch_dtype=torch.float16,
).to(accelerator.device)
pipe.unet_encoder = UNet_Encoder
# pipe.enable_sequential_cpu_offload()
# pipe.enable_model_cpu_offload()
# pipe.enable_vae_slicing()
with torch.no_grad():
# Extract the images
with torch.cuda.amp.autocast():
with torch.no_grad():
for sample in test_dataloader:
img_emb_list = []
for i in range(sample['cloth'].shape[0]):
img_emb_list.append(sample['cloth'][i])
prompt = sample["caption"]
num_prompts = sample['cloth'].shape[0]
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
if not isinstance(prompt, List):
prompt = [prompt] * num_prompts
if not isinstance(negative_prompt, List):
negative_prompt = [negative_prompt] * num_prompts
image_embeds = torch.cat(img_emb_list,dim=0)
with torch.inference_mode():
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
prompt = sample["caption_cloth"]
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
if not isinstance(prompt, List):
prompt = [prompt] * num_prompts
if not isinstance(negative_prompt, List):
negative_prompt = [negative_prompt] * num_prompts
with torch.inference_mode():
(
prompt_embeds_c,
_,
_,
_,
) = pipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=False,
negative_prompt=negative_prompt,
)
generator = torch.Generator(pipe.device).manual_seed(args.seed) if args.seed is not None else None
images = pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
num_inference_steps=args.num_inference_steps,
generator=generator,
strength = 1.0,
pose_img = sample['pose_img'],
text_embeds_cloth=prompt_embeds_c,
cloth = sample["cloth_pure"].to(accelerator.device),
mask_image=sample['inpaint_mask'],
image=(sample['image']+1.0)/2.0,
height=args.height,
width=args.width,
guidance_scale=args.guidance_scale,
ip_adapter_image = image_embeds,
)[0]
for i in range(len(images)):
x_sample = pil_to_tensor(images[i])
torchvision.utils.save_image(x_sample,os.path.join(args.output_dir,sample['im_name'][i]))
if __name__ == "__main__":
main()