summarizer / app.py
gera
enough for today.
4a99335
raw
history blame
3.66 kB
import gradio as gr
from openai import OpenAI
import tiktoken
from os import getenv as os_getenv
from json import loads as json_loads
from pathlib import Path
import fitz
MODEL = 'gpt-4-turbo'
PRICE_PER_M = 10.00
LIMIT = 120000 # some space for answer
api_key = os_getenv("OPENAI_APIKEY")
client = OpenAI(api_key=api_key)
def get_prompt(books, question = None):
prompt = (
f"Read the following books.\n" +
f"Each book may have some pages at the beggining with data about the book, an index, or table of content, etc. " +
f"Pages may have a header and/or a footer. Consider all this maybe present." +
f"Please answer, for each book, all below in the suggested format, in the language of the book:\n"+
f"**Title**: ...\n"
f"**Author**: ...\n"
f"**Chapter Names**: ...\n"
f"**Characters**: \n"
f"**Detailed Summary of the whole book**: \n"
)
prompt += f"{books}\n"
return prompt
def chat(message, history, files):
history_openai_format = []
if len(history) == 0:
raise gr.Error("Primero hay que subir un libro")
if len(history) == 1:
if message:
raise gr.Error("First message must be empty")
message = history[0][0]
else:
for human, assistant in history:
if human:
history_openai_format.append({"role": "user", "content": human })
if assistant:
history_openai_format.append({"role": "assistant", "content":assistant})
history_openai_format.append({"role": "user", "content": message})
response = client.chat.completions.create(
model=MODEL,
messages= history_openai_format,
temperature=1.0,
stream=True)
partial_message = ""
for chunk in response:
if chunk.choices[0].delta.content is not None:
partial_message = partial_message + chunk.choices[0].delta.content
yield partial_message
def get_text(filename):
answer = ""
suffix = Path(filename).suffix
if suffix in [".pdf"]:
for i,page in enumerate(fitz.open(filename)):
answer += f"\n### Page #{i+1}\n{page.get_text()}\n"
elif suffix in [".txt"]:
answer = open(filename).read()
return answer
def files_ready(filenames):
encoder = encoding = tiktoken.encoding_for_model('gpt-4-turbo')
books = ''
for i, name in enumerate(filenames):
books += f"\n## Document #{i+1}\nName: {Path(name).name}\n"
books += get_text(name)
prompt = get_prompt(books)
tokens = len(encoder.encode(prompt))
cost = tokens * PRICE_PER_M / 1000000 * 2 # * 2 is too much for an answer
if tokens > LIMIT:
raise gr.Error(f"Book is too long. It's {tokens} tokens long and can't be more than {LIMIT}.")
return tokens, f"${cost}", [[prompt, None]]
def files_changed(filenames):
if filenames:
return "-", "-"
else:
return 0, "$0"
with gr.Blocks(title="Book summarization and more") as demo:
with gr.Row():
files = gr.Files(file_types=["txt","doc","docx","pdf"] )
with gr.Column():
tokens = gr.Text("0", label="Tokens")
cost = gr.Text("0", label="Cost")
chat = gr.ChatInterface(
fn=chat,
title="Summarization and more",
additional_inputs=[files],
multimodal=False)
other = gr.Button(interactive=False)
files.upload(files_ready, [files], [tokens, cost, chat.chatbot_state])
files.change(files_changed, files, [tokens, cost])
auth=os_getenv("APP_USERS", "null")
auth=json_loads(auth)
demo.launch(auth=auth)