Spaces:
Runtime error
Runtime error
recover gpu support
Browse files- app.py +7 -2
- cldm/cldm.py +10 -4
- cldm/ddim_hacked.py +6 -2
- ldm/models/diffusion/ddim.py +8 -2
- ldm/modules/attention.py +7 -1
- ldm/modules/diffusionmodules/util.py +1 -1
- ldm/modules/encoders/modules.py +12 -6
app.py
CHANGED
@@ -16,9 +16,14 @@ from cldm.ddim_hacked import DDIMSampler
|
|
16 |
import dlib
|
17 |
from PIL import Image, ImageDraw
|
18 |
|
|
|
|
|
|
|
|
|
|
|
19 |
model = create_model('./models/cldm_v15.yaml').cpu()
|
20 |
model.load_state_dict(load_state_dict('./models/control_sd15_landmarks.pth', location='cpu'))
|
21 |
-
model = model
|
22 |
ddim_sampler = DDIMSampler(model)
|
23 |
|
24 |
detector = dlib.get_frontal_face_detector()
|
@@ -56,7 +61,7 @@ def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resoluti
|
|
56 |
detected_map = get_68landmarks_img(img)
|
57 |
detected_map = HWC3(detected_map)
|
58 |
|
59 |
-
control = torch.from_numpy(detected_map.copy()).float() / 255.0
|
60 |
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
61 |
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
62 |
|
|
|
16 |
import dlib
|
17 |
from PIL import Image, ImageDraw
|
18 |
|
19 |
+
if torch.cuda.is_available():
|
20 |
+
device = torch.device("cuda")
|
21 |
+
else:
|
22 |
+
device = torch.device("cpu")
|
23 |
+
|
24 |
model = create_model('./models/cldm_v15.yaml').cpu()
|
25 |
model.load_state_dict(load_state_dict('./models/control_sd15_landmarks.pth', location='cpu'))
|
26 |
+
model = model.to(device)
|
27 |
ddim_sampler = DDIMSampler(model)
|
28 |
|
29 |
detector = dlib.get_frontal_face_detector()
|
|
|
61 |
detected_map = get_68landmarks_img(img)
|
62 |
detected_map = HWC3(detected_map)
|
63 |
|
64 |
+
control = torch.from_numpy(detected_map.copy()).float().to(device) / 255.0
|
65 |
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
66 |
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
67 |
|
cldm/cldm.py
CHANGED
@@ -18,6 +18,12 @@ from ldm.models.diffusion.ddpm import LatentDiffusion
|
|
18 |
from ldm.util import log_txt_as_img, exists, instantiate_from_config
|
19 |
from ldm.models.diffusion.ddim import DDIMSampler
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
class ControlledUnetModel(UNetModel):
|
23 |
def forward(self, x, timesteps=None, context=None, control=None, only_mid_control=False, **kwargs):
|
@@ -424,12 +430,12 @@ class ControlLDM(LatentDiffusion):
|
|
424 |
|
425 |
def low_vram_shift(self, is_diffusing):
|
426 |
if is_diffusing:
|
427 |
-
self.model = self.model.
|
428 |
-
self.control_model = self.control_model.
|
429 |
self.first_stage_model = self.first_stage_model.cpu()
|
430 |
self.cond_stage_model = self.cond_stage_model.cpu()
|
431 |
else:
|
432 |
self.model = self.model.cpu()
|
433 |
self.control_model = self.control_model.cpu()
|
434 |
-
self.first_stage_model = self.first_stage_model.
|
435 |
-
self.cond_stage_model = self.cond_stage_model.
|
|
|
18 |
from ldm.util import log_txt_as_img, exists, instantiate_from_config
|
19 |
from ldm.models.diffusion.ddim import DDIMSampler
|
20 |
|
21 |
+
if torch.cuda.is_available():
|
22 |
+
device = torch.device("cuda")
|
23 |
+
device_type = "cuda"
|
24 |
+
else:
|
25 |
+
device = torch.device("cpu")
|
26 |
+
device_type = "cpu"
|
27 |
|
28 |
class ControlledUnetModel(UNetModel):
|
29 |
def forward(self, x, timesteps=None, context=None, control=None, only_mid_control=False, **kwargs):
|
|
|
430 |
|
431 |
def low_vram_shift(self, is_diffusing):
|
432 |
if is_diffusing:
|
433 |
+
self.model = self.model.to(device)
|
434 |
+
self.control_model = self.control_model.to(device)
|
435 |
self.first_stage_model = self.first_stage_model.cpu()
|
436 |
self.cond_stage_model = self.cond_stage_model.cpu()
|
437 |
else:
|
438 |
self.model = self.model.cpu()
|
439 |
self.control_model = self.control_model.cpu()
|
440 |
+
self.first_stage_model = self.first_stage_model.to(device)
|
441 |
+
self.cond_stage_model = self.cond_stage_model.to(device)
|
cldm/ddim_hacked.py
CHANGED
@@ -6,6 +6,10 @@ from tqdm import tqdm
|
|
6 |
|
7 |
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
|
8 |
|
|
|
|
|
|
|
|
|
9 |
|
10 |
class DDIMSampler(object):
|
11 |
def __init__(self, model, schedule="linear", **kwargs):
|
@@ -16,8 +20,8 @@ class DDIMSampler(object):
|
|
16 |
|
17 |
def register_buffer(self, name, attr):
|
18 |
if type(attr) == torch.Tensor:
|
19 |
-
if attr.device !=
|
20 |
-
attr = attr.to(
|
21 |
setattr(self, name, attr)
|
22 |
|
23 |
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
|
|
6 |
|
7 |
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
|
8 |
|
9 |
+
if torch.cuda.is_available():
|
10 |
+
device = torch.device("cuda")
|
11 |
+
else:
|
12 |
+
device = torch.device("cpu")
|
13 |
|
14 |
class DDIMSampler(object):
|
15 |
def __init__(self, model, schedule="linear", **kwargs):
|
|
|
20 |
|
21 |
def register_buffer(self, name, attr):
|
22 |
if type(attr) == torch.Tensor:
|
23 |
+
if attr.device != device:
|
24 |
+
attr = attr.to(device)
|
25 |
setattr(self, name, attr)
|
26 |
|
27 |
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
ldm/models/diffusion/ddim.py
CHANGED
@@ -6,6 +6,12 @@ from tqdm import tqdm
|
|
6 |
|
7 |
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
class DDIMSampler(object):
|
11 |
def __init__(self, model, schedule="linear", **kwargs):
|
@@ -16,8 +22,8 @@ class DDIMSampler(object):
|
|
16 |
|
17 |
def register_buffer(self, name, attr):
|
18 |
if type(attr) == torch.Tensor:
|
19 |
-
if attr.device != torch.device(
|
20 |
-
attr = attr.to(torch.device(
|
21 |
setattr(self, name, attr)
|
22 |
|
23 |
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
|
|
6 |
|
7 |
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
|
8 |
|
9 |
+
if torch.cuda.is_available():
|
10 |
+
device = torch.device("cuda")
|
11 |
+
device_type = "cuda"
|
12 |
+
else:
|
13 |
+
device = torch.device("cpu")
|
14 |
+
device_type = "cpu"
|
15 |
|
16 |
class DDIMSampler(object):
|
17 |
def __init__(self, model, schedule="linear", **kwargs):
|
|
|
22 |
|
23 |
def register_buffer(self, name, attr):
|
24 |
if type(attr) == torch.Tensor:
|
25 |
+
if attr.device != torch.device(device_type):
|
26 |
+
attr = attr.to(torch.device(device_type))
|
27 |
setattr(self, name, attr)
|
28 |
|
29 |
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
ldm/modules/attention.py
CHANGED
@@ -8,6 +8,12 @@ from typing import Optional, Any
|
|
8 |
|
9 |
from ldm.modules.diffusionmodules.util import checkpoint
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
try:
|
13 |
import xformers
|
@@ -172,7 +178,7 @@ class CrossAttention(nn.Module):
|
|
172 |
|
173 |
# force cast to fp32 to avoid overflowing
|
174 |
if _ATTN_PRECISION =="fp32":
|
175 |
-
with torch.autocast(enabled=False, device_type =
|
176 |
q, k = q.float(), k.float()
|
177 |
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
178 |
else:
|
|
|
8 |
|
9 |
from ldm.modules.diffusionmodules.util import checkpoint
|
10 |
|
11 |
+
if torch.cuda.is_available():
|
12 |
+
device = torch.device("cuda")
|
13 |
+
device_type = "cuda"
|
14 |
+
else:
|
15 |
+
device = torch.device("cpu")
|
16 |
+
device_type = "cpu"
|
17 |
|
18 |
try:
|
19 |
import xformers
|
|
|
178 |
|
179 |
# force cast to fp32 to avoid overflowing
|
180 |
if _ATTN_PRECISION =="fp32":
|
181 |
+
with torch.autocast(enabled=False, device_type = device_type):
|
182 |
q, k = q.float(), k.float()
|
183 |
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
184 |
else:
|
ldm/modules/diffusionmodules/util.py
CHANGED
@@ -133,7 +133,7 @@ class CheckpointFunction(torch.autograd.Function):
|
|
133 |
def backward(ctx, *output_grads):
|
134 |
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
135 |
with torch.enable_grad(), \
|
136 |
-
torch.
|
137 |
# Fixes a bug where the first op in run_function modifies the
|
138 |
# Tensor storage in place, which is not allowed for detach()'d
|
139 |
# Tensors.
|
|
|
133 |
def backward(ctx, *output_grads):
|
134 |
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
135 |
with torch.enable_grad(), \
|
136 |
+
torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
|
137 |
# Fixes a bug where the first op in run_function modifies the
|
138 |
# Tensor storage in place, which is not allowed for detach()'d
|
139 |
# Tensors.
|
ldm/modules/encoders/modules.py
CHANGED
@@ -7,6 +7,12 @@ from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextMod
|
|
7 |
import open_clip
|
8 |
from ldm.util import default, count_params
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
class AbstractEncoder(nn.Module):
|
12 |
def __init__(self):
|
@@ -42,7 +48,7 @@ class ClassEmbedder(nn.Module):
|
|
42 |
c = self.embedding(c)
|
43 |
return c
|
44 |
|
45 |
-
def get_unconditional_conditioning(self, bs, device=
|
46 |
uc_class = self.n_classes - 1 # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
|
47 |
uc = torch.ones((bs,), device=device) * uc_class
|
48 |
uc = {self.key: uc}
|
@@ -57,7 +63,7 @@ def disabled_train(self, mode=True):
|
|
57 |
|
58 |
class FrozenT5Embedder(AbstractEncoder):
|
59 |
"""Uses the T5 transformer encoder for text"""
|
60 |
-
def __init__(self, version="google/t5-v1_1-large", device=
|
61 |
super().__init__()
|
62 |
self.tokenizer = T5Tokenizer.from_pretrained(version)
|
63 |
self.transformer = T5EncoderModel.from_pretrained(version)
|
@@ -92,7 +98,7 @@ class FrozenCLIPEmbedder(AbstractEncoder):
|
|
92 |
"pooled",
|
93 |
"hidden"
|
94 |
]
|
95 |
-
def __init__(self, version="openai/clip-vit-large-patch14", device=
|
96 |
freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32
|
97 |
super().__init__()
|
98 |
assert layer in self.LAYERS
|
@@ -140,11 +146,11 @@ class FrozenOpenCLIPEmbedder(AbstractEncoder):
|
|
140 |
"last",
|
141 |
"penultimate"
|
142 |
]
|
143 |
-
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device=
|
144 |
freeze=True, layer="last"):
|
145 |
super().__init__()
|
146 |
assert layer in self.LAYERS
|
147 |
-
model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device(
|
148 |
del model.visual
|
149 |
self.model = model
|
150 |
|
@@ -194,7 +200,7 @@ class FrozenOpenCLIPEmbedder(AbstractEncoder):
|
|
194 |
|
195 |
|
196 |
class FrozenCLIPT5Encoder(AbstractEncoder):
|
197 |
-
def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device=
|
198 |
clip_max_length=77, t5_max_length=77):
|
199 |
super().__init__()
|
200 |
self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length)
|
|
|
7 |
import open_clip
|
8 |
from ldm.util import default, count_params
|
9 |
|
10 |
+
if torch.cuda.is_available():
|
11 |
+
device = torch.device("cuda")
|
12 |
+
device_type = "cuda"
|
13 |
+
else:
|
14 |
+
device = torch.device("cpu")
|
15 |
+
device_type = "cpu"
|
16 |
|
17 |
class AbstractEncoder(nn.Module):
|
18 |
def __init__(self):
|
|
|
48 |
c = self.embedding(c)
|
49 |
return c
|
50 |
|
51 |
+
def get_unconditional_conditioning(self, bs, device=device_type):
|
52 |
uc_class = self.n_classes - 1 # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
|
53 |
uc = torch.ones((bs,), device=device) * uc_class
|
54 |
uc = {self.key: uc}
|
|
|
63 |
|
64 |
class FrozenT5Embedder(AbstractEncoder):
|
65 |
"""Uses the T5 transformer encoder for text"""
|
66 |
+
def __init__(self, version="google/t5-v1_1-large", device=device_type, max_length=77, freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
|
67 |
super().__init__()
|
68 |
self.tokenizer = T5Tokenizer.from_pretrained(version)
|
69 |
self.transformer = T5EncoderModel.from_pretrained(version)
|
|
|
98 |
"pooled",
|
99 |
"hidden"
|
100 |
]
|
101 |
+
def __init__(self, version="openai/clip-vit-large-patch14", device=device_type, max_length=77,
|
102 |
freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32
|
103 |
super().__init__()
|
104 |
assert layer in self.LAYERS
|
|
|
146 |
"last",
|
147 |
"penultimate"
|
148 |
]
|
149 |
+
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device=device_type, max_length=77,
|
150 |
freeze=True, layer="last"):
|
151 |
super().__init__()
|
152 |
assert layer in self.LAYERS
|
153 |
+
model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device(device_type), pretrained=version)
|
154 |
del model.visual
|
155 |
self.model = model
|
156 |
|
|
|
200 |
|
201 |
|
202 |
class FrozenCLIPT5Encoder(AbstractEncoder):
|
203 |
+
def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device=device_type,
|
204 |
clip_max_length=77, t5_max_length=77):
|
205 |
super().__init__()
|
206 |
self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length)
|