import gradio as gr from diffusers import StableDiffusion3Pipeline import torch import os from huggingface_hub import login # 通过环境变量获取 Token hf_token = os.getenv("HF_TOKEN") # 使用 Hugging Face Token 登录 login(token=hf_token) # 加载模型 pipe = StableDiffusion3Pipeline.from_pretrained("prithivMLmods/SD3.5-Large-Photorealistic-LoRA", revision="main", torch_dtype=torch.float16) # 如果模型需要LoRA权重文件,可以手动加载 pipe.load_lora_weights("prithivMLmods/SD3.5-Large-Photorealistic-LoRA", weight_name="Photorealistic-SD3.5-Large-LoRA.safetensors") pipe.fuse_lora(lora_scale=1.0) # 定义图像生成函数 def generate_image(prompt): print(prompt) return pipe(prompt).images[0] # 创建 Gradio 界面 iface = gr.Interface(fn=generate_image, inputs="text", outputs="image") # 启动界面 iface.launch() # import gradio as gr # gr.load("models/prithivMLmods/SD3.5-Large-Photorealistic-LoRA").launch() # import gradio as gr # import torch # from diffusers import StableDiffusion3Pipeline # import os # from huggingface_hub import login # # 获取Hugging Face Token # hf_token = os.environ.get("HF_TOKEN") # login(token=hf_token) # # 加载模型并配置 # pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-large", torch_dtype=torch.bfloat16) # pipe.load_lora_weights("prithivMLmods/SD3.5-Large-Photorealistic-LoRA", weight_name="Photorealistic-SD3.5-Large-LoRA.safetensors") # pipe.fuse_lora(lora_scale=1.0) # # 如果有GPU,转移到GPU # # pipe.to("cuda") # # 定义图像生成函数,添加种子参数 # def generate_image(prompt, seed): # # 设置种子 # generator = torch.manual_seed(seed) # # 使用模型生成图像 # result = pipe(prompt=prompt, # num_inference_steps=24, # guidance_scale=4.0, # width=960, height=1280, # generator=generator) # # 确保返回 PIL 图像 # image = result.images[0] # print(type(image)) # return image # # 创建Gradio界面(使用 Interface) # def gradio_interface(): # with gr.Interface(fn=generate_image, # inputs=[gr.Textbox(label="Prompt", value="Man in the style of dark beige and brown, uhd image, youthful protagonists, nonrepresentational photography"), # gr.Slider(minimum=0, maximum=100000, step=1, label="Seed", value=42)], # outputs=gr.Image(type="pil", label="Generated Image")) as demo: # demo.launch() # # 启动Gradio应用 # gradio_interface() # # 创建Gradio界面 # # with gr.Blocks() as demo: # # gr.Markdown("## Stable Diffusion Image Generation with Seed Control") # # # 输入框:提示文本 # # prompt_input = gr.Textbox(label="Prompt", value="Man in the style of dark beige and brown, uhd image, youthful protagonists, nonrepresentational photography") # # # 滑块:种子 # # seed_input = gr.Slider(minimum=0, maximum=100000, step=1, label="Seed", value=42) # # # 输出图像 # # output_image = gr.Image(type="pil", label="Generated Image") # # # 按钮触发事件 # # generate_btn = gr.Button("Generate Image") # # generate_btn.click(fn=generate_image, inputs=[prompt_input, seed_input], outputs=output_image) # # # 启动Gradio应用 # # demo.launch()