File size: 3,333 Bytes
bb04441 4bdd10f bb04441 4bdd10f bb04441 4bdd10f bb04441 53b7789 bb04441 53b7789 bb04441 53b7789 bb04441 53b7789 bb04441 53b7789 bb04441 53b7789 095f289 c06bbea 7a759d0 095f289 7a759d0 22a2ff4 7a759d0 4cec43c 7a759d0 4cec43c 7a759d0 22a2ff4 7a759d0 bb3044b 7a759d0 bb3044b 7a759d0 22a2ff4 7a759d0 2385429 7a759d0 4dd0da4 7a759d0 4dd0da4 7a759d0 4dd0da4 7a759d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
# import gradio as gr
# from diffusers import StableDiffusion3Pipeline
# import torch
# import os
# from huggingface_hub import login
# # 通过环境变量获取 Token
# hf_token = os.getenv("HF_TOKEN")
# # 使用 Hugging Face Token 登录
# login(token=hf_token)
# pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-large", torch_dtype=torch.bfloat16)
# pipe.load_lora_weights("prithivMLmods/SD3.5-Large-Photorealistic-LoRA", weight_name="Photorealistic-SD3.5-Large-LoRA.safetensors")
# pipe.fuse_lora(lora_scale=1.0)
# # 定义图像生成函数
# def generate_image(prompt):
# print(prompt)
# return pipe(prompt).images[0]
# # 创建 Gradio 界面
# iface = gr.Interface(fn=generate_image, inputs="text", outputs="image")
# # 启动界面
# iface.launch()
import gradio as gr
gr.load("models/prithivMLmods/SD3.5-Large-Photorealistic-LoRA").launch()
# import gradio as gr
# import torch
# from diffusers import StableDiffusion3Pipeline
# import os
# from huggingface_hub import login
# # 获取Hugging Face Token
# hf_token = os.environ.get("HF_TOKEN")
# login(token=hf_token)
# # 加载模型并配置
# pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-large", torch_dtype=torch.bfloat16)
# pipe.load_lora_weights("prithivMLmods/SD3.5-Large-Photorealistic-LoRA", weight_name="Photorealistic-SD3.5-Large-LoRA.safetensors")
# pipe.fuse_lora(lora_scale=1.0)
# # 如果有GPU,转移到GPU
# # pipe.to("cuda")
# # 定义图像生成函数,添加种子参数
# def generate_image(prompt, seed):
# # 设置种子
# generator = torch.manual_seed(seed)
# # 使用模型生成图像
# result = pipe(prompt=prompt,
# num_inference_steps=24,
# guidance_scale=4.0,
# width=960, height=1280,
# generator=generator)
# # 确保返回 PIL 图像
# image = result.images[0]
# print(type(image))
# return image
# # 创建Gradio界面(使用 Interface)
# def gradio_interface():
# with gr.Interface(fn=generate_image,
# inputs=[gr.Textbox(label="Prompt", value="Man in the style of dark beige and brown, uhd image, youthful protagonists, nonrepresentational photography"),
# gr.Slider(minimum=0, maximum=100000, step=1, label="Seed", value=42)],
# outputs=gr.Image(type="pil", label="Generated Image")) as demo:
# demo.launch()
# # 启动Gradio应用
# gradio_interface()
# # 创建Gradio界面
# # with gr.Blocks() as demo:
# # gr.Markdown("## Stable Diffusion Image Generation with Seed Control")
# # # 输入框:提示文本
# # prompt_input = gr.Textbox(label="Prompt", value="Man in the style of dark beige and brown, uhd image, youthful protagonists, nonrepresentational photography")
# # # 滑块:种子
# # seed_input = gr.Slider(minimum=0, maximum=100000, step=1, label="Seed", value=42)
# # # 输出图像
# # output_image = gr.Image(type="pil", label="Generated Image")
# # # 按钮触发事件
# # generate_btn = gr.Button("Generate Image")
# # generate_btn.click(fn=generate_image, inputs=[prompt_input, seed_input], outputs=output_image)
# # # 启动Gradio应用
# # demo.launch() |