File size: 3,147 Bytes
2385429
53b7789
 
 
4bdd10f
 
 
 
 
 
 
 
53b7789
b8c5f04
53b7789
 
 
b8c5f04
53b7789
 
 
 
 
 
 
 
 
 
 
 
 
095f289
c06bbea
7a759d0
 
 
 
 
095f289
7a759d0
 
 
22a2ff4
7a759d0
 
 
 
 
 
 
 
 
 
 
 
4cec43c
7a759d0
 
 
 
 
 
4cec43c
7a759d0
 
 
 
22a2ff4
7a759d0
 
 
 
 
 
 
bb3044b
7a759d0
 
bb3044b
7a759d0
 
 
22a2ff4
7a759d0
 
2385429
7a759d0
 
4dd0da4
7a759d0
 
4dd0da4
7a759d0
 
 
4dd0da4
7a759d0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import gradio as gr
from diffusers import StableDiffusion3Pipeline
import torch

from huggingface_hub import login

# 通过环境变量获取 Token
hf_token = os.getenv("HF_TOKEN")

# 使用 Hugging Face Token 登录
login(token=hf_token)

# 加载模型
pipe = StableDiffusion3Pipeline.from_pretrained("prithivMLmods/SD3.5-Large-Photorealistic-LoRA", torch_dtype=torch.float16)

# 定义图像生成函数
def generate_image(prompt):
    print(prompt)
    return pipe(prompt).images[0]

# 创建 Gradio 界面
iface = gr.Interface(fn=generate_image, inputs="text", outputs="image")

# 启动界面
iface.launch()


# import gradio as gr

# gr.load("models/prithivMLmods/SD3.5-Large-Photorealistic-LoRA").launch()



# import gradio as gr
# import torch
# from diffusers import StableDiffusion3Pipeline
# import os
# from huggingface_hub import login

# # 获取Hugging Face Token
# hf_token = os.environ.get("HF_TOKEN")
# login(token=hf_token)

# # 加载模型并配置
# pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-large", torch_dtype=torch.bfloat16)
# pipe.load_lora_weights("prithivMLmods/SD3.5-Large-Photorealistic-LoRA", weight_name="Photorealistic-SD3.5-Large-LoRA.safetensors")
# pipe.fuse_lora(lora_scale=1.0)

# # 如果有GPU,转移到GPU
# # pipe.to("cuda")

# # 定义图像生成函数,添加种子参数
# def generate_image(prompt, seed):
#     # 设置种子
#     generator = torch.manual_seed(seed)
    
#     # 使用模型生成图像
#     result = pipe(prompt=prompt,
#                   num_inference_steps=24, 
#                   guidance_scale=4.0,
#                   width=960, height=1280,
#                   generator=generator)
    
#     # 确保返回 PIL 图像
#     image = result.images[0]
#     print(type(image))
#     return image

# # 创建Gradio界面(使用 Interface)
# def gradio_interface():
#     with gr.Interface(fn=generate_image, 
#                       inputs=[gr.Textbox(label="Prompt", value="Man in the style of dark beige and brown, uhd image, youthful protagonists, nonrepresentational photography"),
#                               gr.Slider(minimum=0, maximum=100000, step=1, label="Seed", value=42)], 
#                       outputs=gr.Image(type="pil", label="Generated Image")) as demo:
#         demo.launch()

# # 启动Gradio应用
# gradio_interface()
    
# # 创建Gradio界面
# # with gr.Blocks() as demo:
# #     gr.Markdown("## Stable Diffusion Image Generation with Seed Control")

# #     # 输入框:提示文本
# #     prompt_input = gr.Textbox(label="Prompt", value="Man in the style of dark beige and brown, uhd image, youthful protagonists, nonrepresentational photography")

# #     # 滑块:种子
# #     seed_input = gr.Slider(minimum=0, maximum=100000, step=1, label="Seed", value=42)

# #     # 输出图像
# #     output_image = gr.Image(type="pil", label="Generated Image")

# #     # 按钮触发事件
# #     generate_btn = gr.Button("Generate Image")
# #     generate_btn.click(fn=generate_image, inputs=[prompt_input, seed_input], outputs=output_image)

# # # 启动Gradio应用
# # demo.launch()