Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,94 +1,35 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import soundfile as sf
|
4 |
-
import uuid
|
5 |
-
import datetime
|
6 |
-
import shutil
|
7 |
-
from transformers import pipeline
|
8 |
import scipy.io.wavfile
|
9 |
import numpy as np
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
|
14 |
-
# Load your custom TTS model and processor for inference
|
15 |
-
model_id = "ganga4364/mms-tts-bod-female" # Replace with your fine-tuned model's ID
|
16 |
|
|
|
|
|
17 |
|
18 |
-
# Use the text-to-speech pipeline with the custom model
|
19 |
-
synthesiser = pipeline("text-to-speech", model_id) # Use GPU if available
|
20 |
|
21 |
-
#
|
22 |
-
def
|
23 |
-
#
|
24 |
-
|
25 |
-
|
26 |
-
#
|
27 |
-
|
28 |
-
|
29 |
-
return sentences
|
30 |
|
31 |
-
#
|
32 |
-
|
33 |
-
# Get a list of all WAV files in the folder
|
34 |
-
wav_files = [file for file in os.listdir(source_dir) if file.endswith(".wav")]
|
35 |
-
|
36 |
-
# Sort the files alphabetically to ensure the correct order of combination
|
37 |
-
wav_files.sort()
|
38 |
-
|
39 |
-
# Combine the WAV files
|
40 |
-
combined_data = []
|
41 |
-
sr = None
|
42 |
-
for file in wav_files:
|
43 |
-
file_path = os.path.join(source_dir, file)
|
44 |
-
data, sample_rate = sf.read(file_path)
|
45 |
-
if sr is None:
|
46 |
-
sr = sample_rate # Set the sample rate based on the first file
|
47 |
-
combined_data.extend(data)
|
48 |
-
|
49 |
-
# Save the combined audio to a new WAV file
|
50 |
-
combined_file_path = f"{stamp}_combined.wav"
|
51 |
-
sf.write(combined_file_path, combined_data, sr)
|
52 |
-
|
53 |
-
# Clean up temporary files
|
54 |
-
shutil.rmtree(source_dir)
|
55 |
-
|
56 |
-
return combined_file_path
|
57 |
-
|
58 |
-
# Main function to process Tibetan text and generate audio
|
59 |
-
def tts_tibetan(input_text):
|
60 |
-
# Prepare sentences from the input text using the custom function
|
61 |
-
sentences = prepare_sentences(input_text)
|
62 |
-
|
63 |
-
# Create a unique directory for storing audio chunks
|
64 |
-
current_datetime = datetime.datetime.now()
|
65 |
-
timestamp = current_datetime.strftime("%Y%m%d%H%M%S%f")
|
66 |
-
user_dir = f"u_{timestamp}"
|
67 |
-
os.makedirs(user_dir, exist_ok=True)
|
68 |
-
|
69 |
-
# Generate audio for each sentence using your custom TTS model
|
70 |
-
for i, sentence in enumerate(sentences):
|
71 |
-
# Perform TTS inference for each sentence
|
72 |
-
speech = synthesiser(sentence)
|
73 |
-
|
74 |
-
# Save each sentence as a separate WAV file
|
75 |
-
wav_path = f"{user_dir}/s_{str(i).zfill(10)}.wav"
|
76 |
-
scipy.io.wavfile.write(wav_path, rate=speech["sampling_rate"], data=speech["audio"][0])
|
77 |
-
|
78 |
-
# Combine the generated audio into one file
|
79 |
-
combined_file_path = combine_wav(user_dir, timestamp)
|
80 |
-
|
81 |
-
# Return the path of the combined audio file for Gradio to handle
|
82 |
-
return combined_file_path
|
83 |
|
84 |
# Create the Gradio interface
|
85 |
iface = gr.Interface(
|
86 |
-
fn=
|
87 |
-
inputs="text",
|
88 |
-
outputs="audio", # Output
|
89 |
-
title="Tibetan TTS
|
90 |
-
description=
|
91 |
)
|
92 |
|
93 |
# Launch the Gradio interface
|
94 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
|
|
|
|
|
|
|
|
|
|
3 |
import scipy.io.wavfile
|
4 |
import numpy as np
|
5 |
|
6 |
+
# Load the MMS-TTS model and processor for Tibetan (bod)
|
7 |
+
model_id = "ganga4364/mms-tts-bod-female" # Replace with your fine-tuned model if necessary
|
8 |
|
|
|
|
|
9 |
|
10 |
+
# Use the text-to-speech pipeline with the model
|
11 |
+
synthesiser = pipeline("text-to-speech", model_id) # add device=0 if you want to use a GPU
|
12 |
|
|
|
|
|
13 |
|
14 |
+
# Function to perform TTS inference and save audio to a file
|
15 |
+
def generate_audio(input_text):
|
16 |
+
# Perform TTS inference
|
17 |
+
speech = synthesiser(input_text)
|
18 |
+
file_path = "finetuned_output.wav"
|
19 |
+
# Save the audio to a file (e.g., 'output.wav')
|
20 |
+
scipy.io.wavfile.write(file_path, rate=speech["sampling_rate"], data=speech["audio"][0])
|
|
|
|
|
21 |
|
22 |
+
# Return the path to the audio file
|
23 |
+
return file_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
# Create the Gradio interface
|
26 |
iface = gr.Interface(
|
27 |
+
fn=generate_audio,
|
28 |
+
inputs="text", # Text input for the TTS
|
29 |
+
outputs="audio", # Output will be an audio file
|
30 |
+
title="Tibetan Text-to-Speech (MMS-TTS)",
|
31 |
+
description="Enter Tibetan text and generate speech using MMS-TTS."
|
32 |
)
|
33 |
|
34 |
# Launch the Gradio interface
|
35 |
+
iface.launch()
|