Spaces:
Runtime error
Runtime error
Dean
commited on
Commit
·
83a4c6e
1
Parent(s):
7e3c514
Applied fixes to dagshub logger
Browse files- .gitignore +1 -0
- dvc.lock +23 -23
- reports/metrics.csv +5 -0
- reports/metrics.txt +0 -1
- reports/training_metrics.csv +19 -0
- reports/training_metrics.txt +0 -1
- requirements.txt +1 -1
- src/data/process_data.py +0 -2
- src/models/evaluate_model.py +1 -1
.gitignore
CHANGED
@@ -95,3 +95,4 @@ coverage.xml
|
|
95 |
|
96 |
summarization-dagshub/
|
97 |
/models
|
|
|
|
95 |
|
96 |
summarization-dagshub/
|
97 |
/models
|
98 |
+
default/
|
dvc.lock
CHANGED
@@ -10,22 +10,22 @@ stages:
|
|
10 |
md5: 0900e2bb330df94cb045faddd0b945d1
|
11 |
size: 1138285
|
12 |
- path: params.yml
|
13 |
-
md5:
|
14 |
size: 189
|
15 |
- path: src/models/train_model.py
|
16 |
md5: d57b5ff84bc29a8ea75e191027d70148
|
17 |
size: 988
|
18 |
outs:
|
19 |
- path: models
|
20 |
-
md5:
|
21 |
-
size:
|
22 |
-
nfiles:
|
23 |
- path: reports/training_metrics.csv
|
24 |
-
md5:
|
25 |
-
size:
|
26 |
- path: reports/training_params.yml
|
27 |
-
md5:
|
28 |
-
size:
|
29 |
eval:
|
30 |
cmd: python src/models/evaluate_model.py
|
31 |
deps:
|
@@ -33,32 +33,32 @@ stages:
|
|
33 |
md5: 3cb7b63891f12d53b3ef3e81a2e93f8e
|
34 |
size: 986944
|
35 |
- path: models
|
36 |
-
md5:
|
37 |
size: 486952666
|
38 |
nfiles: 10
|
39 |
- path: params.yml
|
40 |
-
md5:
|
41 |
-
size:
|
42 |
- path: src/models/evaluate_model.py
|
43 |
-
md5:
|
44 |
-
size:
|
45 |
outs:
|
46 |
-
- path: reports/metrics.
|
47 |
-
md5:
|
48 |
-
size:
|
49 |
process_data:
|
50 |
cmd: python src/data/process_data.py
|
51 |
deps:
|
52 |
- path: data/raw
|
53 |
-
md5:
|
54 |
-
size:
|
55 |
-
nfiles:
|
56 |
- path: params.yml
|
57 |
-
md5:
|
58 |
size: 189
|
59 |
- path: src/data/process_data.py
|
60 |
-
md5:
|
61 |
-
size:
|
62 |
outs:
|
63 |
- path: data/processed/test.csv
|
64 |
md5: 3cb7b63891f12d53b3ef3e81a2e93f8e
|
@@ -73,7 +73,7 @@ stages:
|
|
73 |
cmd: python src/data/make_dataset.py
|
74 |
deps:
|
75 |
- path: params.yml
|
76 |
-
md5:
|
77 |
size: 189
|
78 |
- path: src/data/make_dataset.py
|
79 |
md5: 9de71de0f8df5d0a7beb235ef7c7777d
|
|
|
10 |
md5: 0900e2bb330df94cb045faddd0b945d1
|
11 |
size: 1138285
|
12 |
- path: params.yml
|
13 |
+
md5: 200ce3c4d9f2e8b9eb040ef93eb22757
|
14 |
size: 189
|
15 |
- path: src/models/train_model.py
|
16 |
md5: d57b5ff84bc29a8ea75e191027d70148
|
17 |
size: 988
|
18 |
outs:
|
19 |
- path: models
|
20 |
+
md5: ff6de43e1d1f4d7c3d0bb3b551c1085f.dir
|
21 |
+
size: 486952666
|
22 |
+
nfiles: 10
|
23 |
- path: reports/training_metrics.csv
|
24 |
+
md5: 62f71f6ba5390e07bc70e90ac3f1f0e8
|
25 |
+
size: 727
|
26 |
- path: reports/training_params.yml
|
27 |
+
md5: 075736962fab2a5e5b3ff189c13e101b
|
28 |
+
size: 16
|
29 |
eval:
|
30 |
cmd: python src/models/evaluate_model.py
|
31 |
deps:
|
|
|
33 |
md5: 3cb7b63891f12d53b3ef3e81a2e93f8e
|
34 |
size: 986944
|
35 |
- path: models
|
36 |
+
md5: ff6de43e1d1f4d7c3d0bb3b551c1085f.dir
|
37 |
size: 486952666
|
38 |
nfiles: 10
|
39 |
- path: params.yml
|
40 |
+
md5: 200ce3c4d9f2e8b9eb040ef93eb22757
|
41 |
+
size: 189
|
42 |
- path: src/models/evaluate_model.py
|
43 |
+
md5: 55d3aac9c8f024f7d2eb8ad5e0ae87ae
|
44 |
+
size: 688
|
45 |
outs:
|
46 |
+
- path: reports/metrics.csv
|
47 |
+
md5: e618e8c26e0def4e33abcad08ac35ac9
|
48 |
+
size: 1690
|
49 |
process_data:
|
50 |
cmd: python src/data/process_data.py
|
51 |
deps:
|
52 |
- path: data/raw
|
53 |
+
md5: 2ab20ac1b58df875a590b07d0e04eb5b.dir
|
54 |
+
size: 1358833013
|
55 |
+
nfiles: 3
|
56 |
- path: params.yml
|
57 |
+
md5: 200ce3c4d9f2e8b9eb040ef93eb22757
|
58 |
size: 189
|
59 |
- path: src/data/process_data.py
|
60 |
+
md5: 7633b8978c523858d18b1ce9a5d3c8b7
|
61 |
+
size: 516
|
62 |
outs:
|
63 |
- path: data/processed/test.csv
|
64 |
md5: 3cb7b63891f12d53b3ef3e81a2e93f8e
|
|
|
73 |
cmd: python src/data/make_dataset.py
|
74 |
deps:
|
75 |
- path: params.yml
|
76 |
+
md5: 200ce3c4d9f2e8b9eb040ef93eb22757
|
77 |
size: 189
|
78 |
- path: src/data/make_dataset.py
|
79 |
md5: 9de71de0f8df5d0a7beb235ef7c7777d
|
reports/metrics.csv
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Name,Value,Timestamp,Step
|
2 |
+
"Rouge 1","{'Rouge_1 Low Precision': 0.34885388166790793, 'Rouge_1 Low recall': 0.28871556132198656, 'Rouge_1 Low F1': 0.31058637096822267, 'Rouge_1 Mid Precision': 0.412435004251884, 'Rouge_1 Mid recall': 0.3386352228897427, 'Rouge_1 Mid F1': 0.3517931748124066, 'Rouge_1 High Precision': 0.47625451117848977, 'Rouge_1 High recall': 0.39086727645312935, 'Rouge_1 High F1': 0.3959993953753958}",1627559683895,1
|
3 |
+
"Rouge 2","{'Rouge_2 Low Precision': 0.1259156300716482, 'Rouge_2 Low recall': 0.10333119800163641, 'Rouge_2 Low F1': 0.10992592662502373, 'Rouge_2 Mid Precision': 0.16879303949162833, 'Rouge_2 Mid recall': 0.13805319188028575, 'Rouge_2 Mid F1': 0.14400796293585816, 'Rouge_2 High Precision': 0.21844214485938712, 'Rouge_2 High recall': 0.1777722350788, 'Rouge_2 High F1': 0.18342627795315522}",1627559683895,1
|
4 |
+
"Rouge L","{'Rouge_L Low Precision': 0.2322041975032734, 'Rouge_L Low recall': 0.194000575085051, 'Rouge_L Low F1': 0.20468107864660212, 'Rouge_L Mid Precision': 0.2797360675037497, 'Rouge_L Mid recall': 0.22647774162854406, 'Rouge_L Mid F1': 0.2361293941929179, 'Rouge_L High Precision': 0.3357160682858357, 'Rouge_L High recall': 0.2622222798536235, 'Rouge_L High F1': 0.27267217209978356}",1627559683895,1
|
5 |
+
"rougeLsum","{'rougeLsum Low Precision': 0.29651536760563263, 'rougeLsum Low recall': 0.2432094838451322, 'rougeLsum Low F1': 0.26048483356867896, 'rougeLsum Mid Precision': 0.35317671791338556, 'rougeLsum Mid recall': 0.286187817596869, 'rougeLsum Mid F1': 0.2985727815225495, 'rougeLsum High Precision': 0.4134539668577922, 'rougeLsum High recall': 0.3365998852405162, 'rougeLsum High F1': 0.3454898564714797}",1627559683895,1
|
reports/metrics.txt
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"Rouge 1": {"Rouge_1 Low Precision": 0.34885388166790793, "Rouge_1 Low recall": 0.28871556132198656, "Rouge_1 Low F1": 0.31058637096822267, "Rouge_1 Mid Precision": 0.412435004251884, "Rouge_1 Mid recall": 0.3386352228897427, "Rouge_1 Mid F1": 0.3517931748124066, "Rouge_1 High Precision": 0.47625451117848977, "Rouge_1 High recall": 0.39086727645312935, "Rouge_1 High F1": 0.3959993953753958}, "Rouge 2": {"Rouge_2 Low Precision": 0.1259156300716482, "Rouge_2 Low recall": 0.10333119800163641, "Rouge_2 Low F1": 0.10992592662502373, "Rouge_2 Mid Precision": 0.16879303949162833, "Rouge_2 Mid recall": 0.13805319188028575, "Rouge_2 Mid F1": 0.14400796293585816, "Rouge_2 High Precision": 0.21844214485938712, "Rouge_2 High recall": 0.1777722350788, "Rouge_2 High F1": 0.18342627795315522}, "Rouge L": {"Rouge_L Low Precision": 0.2322041975032734, "Rouge_L Low recall": 0.194000575085051, "Rouge_L Low F1": 0.20468107864660212, "Rouge_L Mid Precision": 0.2797360675037497, "Rouge_L Mid recall": 0.22647774162854406, "Rouge_L Mid F1": 0.2361293941929179, "Rouge_L High Precision": 0.3357160682858357, "Rouge_L High recall": 0.2622222798536235, "Rouge_L High F1": 0.27267217209978356}, "rougeLsum": {"rougeLsum Low Precision": 0.29651536760563263, "rougeLsum Low recall": 0.2432094838451322, "rougeLsum Low F1": 0.26048483356867896, "rougeLsum Mid Precision": 0.35317671791338556, "rougeLsum Mid recall": 0.286187817596869, "rougeLsum Mid F1": 0.2985727815225495, "rougeLsum High Precision": 0.4134539668577922, "rougeLsum High recall": 0.3365998852405162, "rougeLsum High F1": 0.3454898564714797}}
|
|
|
|
reports/training_metrics.csv
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Name,Value,Timestamp,Step
|
2 |
+
"train_loss",4.101656913757324,1627559482684,49
|
3 |
+
"epoch",0,1627559482684,49
|
4 |
+
"val_loss",2.6896562576293945,1627559491036,57
|
5 |
+
"epoch",0,1627559491036,57
|
6 |
+
"train_loss",4.598623752593994,1627559499092,99
|
7 |
+
"epoch",1,1627559499092,99
|
8 |
+
"val_loss",2.472928047180176,1627559505946,115
|
9 |
+
"epoch",1,1627559505946,115
|
10 |
+
"train_loss",1.4196646213531494,1627559515636,149
|
11 |
+
"epoch",2,1627559515636,149
|
12 |
+
"val_loss",2.311669111251831,1627559521015,173
|
13 |
+
"epoch",2,1627559521015,173
|
14 |
+
"train_loss",0.9744294881820679,1627559532066,199
|
15 |
+
"epoch",3,1627559532066,199
|
16 |
+
"val_loss",2.2401840686798096,1627559535896,231
|
17 |
+
"epoch",3,1627559535896,231
|
18 |
+
"train_loss",2.785480260848999,1627559548623,249
|
19 |
+
"epoch",4,1627559548623,249
|
reports/training_metrics.txt
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"train_loss": 2.785480260848999, "epoch": 4, "trainer/global_step": 289, "_runtime": 88, "_timestamp": 1627353229, "_step": 9, "val_loss": 2.181020975112915}
|
|
|
|
requirements.txt
CHANGED
@@ -3,7 +3,7 @@ datasets==1.10.2
|
|
3 |
pytorch_lightning==1.3.5
|
4 |
transformers==4.9.0
|
5 |
torch==1.9.0
|
6 |
-
dagshub==0.1.
|
7 |
pandas==1.1.5
|
8 |
rouge_score
|
9 |
pyyaml
|
|
|
3 |
pytorch_lightning==1.3.5
|
4 |
transformers==4.9.0
|
5 |
torch==1.9.0
|
6 |
+
dagshub==0.1.7
|
7 |
pandas==1.1.5
|
8 |
rouge_score
|
9 |
pyyaml
|
src/data/process_data.py
CHANGED
@@ -11,8 +11,6 @@ def process_data(split='train'):
|
|
11 |
df = pd.read_csv('data/raw/{}.csv'.format(split))
|
12 |
df.columns = ['Unnamed: 0', 'input_text', 'output_text']
|
13 |
df = df.sample(frac=params['split'], replace=True, random_state=1)
|
14 |
-
if os.path.exists("data/raw/{}.csv".format(split)):
|
15 |
-
os.remove("data/raw/{}.csv".format(split))
|
16 |
df.to_csv('data/processed/{}.csv'.format(split))
|
17 |
|
18 |
|
|
|
11 |
df = pd.read_csv('data/raw/{}.csv'.format(split))
|
12 |
df.columns = ['Unnamed: 0', 'input_text', 'output_text']
|
13 |
df = df.sample(frac=params['split'], replace=True, random_state=1)
|
|
|
|
|
14 |
df.to_csv('data/processed/{}.csv'.format(split))
|
15 |
|
16 |
|
src/models/evaluate_model.py
CHANGED
@@ -18,7 +18,7 @@ def evaluate_model():
|
|
18 |
model.load_model(model_type=params['model_type'], model_dir=params['model_dir'])
|
19 |
results = model.evaluate(test_df=test_df, metrics=params['metric'])
|
20 |
|
21 |
-
with dagshub_logger(should_log_hparams=False) as logger:
|
22 |
logger.log_metrics(results)
|
23 |
|
24 |
|
|
|
18 |
model.load_model(model_type=params['model_type'], model_dir=params['model_dir'])
|
19 |
results = model.evaluate(test_df=test_df, metrics=params['metric'])
|
20 |
|
21 |
+
with dagshub_logger(metrics_path='reports/metrics.csv', should_log_hparams=False) as logger:
|
22 |
logger.log_metrics(results)
|
23 |
|
24 |
|