File size: 2,306 Bytes
f0fb096
 
 
 
 
 
 
 
 
 
 
 
a99dcd4
9c5d877
a2753ad
f871a4a
a6aadaa
2f1ac21
67b67ae
4c0dd29
524a321
a99dcd4
 
 
 
 
 
 
77e5b87
711de5c
cf08949
a36ddef
5c3219c
a36ddef
 
 
77e5b87
 
5e84214
 
b82b9fe
a36ddef
8e600eb
9c1a43a
794fce7
a36ddef
ed0582f
474a97c
02bf6f1
6d6b899
0862b3b
76dcc01
bac2aa8
40fa062
1087a31
40fa062
 
 
 
 
2f983d0
40fa062
 
 
 
 
e824a15
9f2823c
 
 
 
 
e33c23a
c67859b
9f2823c
 
 
9ba1f65
26d3de4
9f2823c
 
 
9367eff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
title: t5s
emoji: 💯
colorFrom: yellow
colorTo: red
sdk: streamlit
app_file: src/visualization/visualize.py
pinned: false
---



<h1 align="center">t5s</h1>

[![pypi Version](https://img.shields.io/pypi/v/t5s.svg?logo=pypi&logoColor=white)](https://pypi.org/project/t5s/)
[![Downloads](https://static.pepy.tech/personalized-badge/t5s?period=total&units=none&left_color=grey&right_color=orange&left_text=Pip%20Downloads)](https://pepy.tech/project/t5s)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://huggingface.co./spaces/gagan3012/summarization)
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/summarization/blob/master/notebooks/t5s.ipynb)
[![DAGSHub](https://img.shields.io/badge/%F0%9F%90%B6-Pipeline%20on%20DAGsHub-green)](https://dagshub.com/gagan3012/summarization)

T5 Summarisation Using Pytorch Lightning, DVC, DagsHub and HuggingFace Spaces

Here you will find the code for the project, but also the data, models, pipelines and experiments. This means that the project is easily reproducible on any machine, but also that you can contribute data, models, and code to it.

Have a great idea for how to improve the model? Want to add data and metrics to make it more explainable/fair? We'd love to get your help.


## Installation

To use and run the DVC pipeline install the `t5s` package

```
pip install t5s
```

## Usage

![carbon (7)](https://user-images.githubusercontent.com/49101362/129279588-17271a4c-7258-4208-a94d-89e5b97b6cd0.png)

Firstly we need to clone the repo containing the code so we can do that using:

```
t5s clone 
```

We would then have to create the required directories to run the pipeline

```
t5s dirs
``` 

Then we need to pull the models from DVC

```
t5s pull
```

Now to run the training pipeline we can run:

```
t5s run
```

Finally to push the model to DVC

```
t5s push
```

To push this model to HuggingFace Hub for inference you can run:

```
t5s upload
```

Next if we would like to test the model and visualise the results we can run:

```
t5s visualize
```
And this would create a streamlit app for testing