import gradio as gr import torch from my_gpt import my_gpt from tokenizer.tokenizer import BPE ##Load model model = my_gpt.load_pretrained("model/model_1000_.bin") # model.to(torch.device("cpu")) # model.save_pretrained("model/model_1000_cpu.bin") # exit() tokenizer = BPE() def generate(input_text): tokens = tokenizer.encode(input_text) gen_ids = model.generate(torch.tensor([tokens])) output = tokenizer.decode(gen_ids[0].tolist()) return output iface = gr.Interface(fn=generate, inputs="text", outputs="text", title="NoobGPT - 1000 steps", description="""This 13M param model is trained for 1000steps only and has seen only 1M tokens. It is not able to generate perfect sentences/words but has acquired a rudimentary understanding of the English language""") iface.launch()