import gradio as gr | |
import torch | |
from my_gpt import my_gpt | |
from tokenizer.tokenizer import BPE | |
##Load model | |
model = my_gpt.load_pretrained("model/model_1000_.bin") | |
# model.to(torch.device("cpu")) | |
# model.save_pretrained("model/model_1000_cpu.bin") | |
# exit() | |
tokenizer = BPE() | |
def generate(input_text): | |
tokens = tokenizer.encode(input_text) | |
gen_ids = model.generate(torch.tensor([tokens])) | |
output = tokenizer.decode(gen_ids[0].tolist()) | |
return output | |
iface = gr.Interface(fn=generate, | |
inputs="text", | |
outputs="text", | |
title="NoobGPT - 1000 steps", | |
description="""This 13M param model is trained for 1000steps only and has seen only 1M tokens. It is not | |
able to generate perfect sentences/words but has acquired a rudimentary understanding of the English language""") | |
iface.launch() |