{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "1489800c",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd \n",
"import numpy as np \n",
"import seaborn as sns \n",
"import plotly.express as px \n",
"import matplotlib.pyplot as plt \n",
"import warnings\n",
"warnings.filterwarnings(\"ignore\")\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "d7e0e5d9",
"metadata": {},
"source": [
"## 1.Business Understanding"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a5825ab8",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "a2b89f87",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "e9bbcbc9",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "4394daa9",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"id": "be09463e",
"metadata": {},
"source": [
"## Hypothesis "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "55c9f906",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "6115c64f",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"id": "3a53ac2a",
"metadata": {},
"source": [
"## 2.Data Understanding"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "a2b2706e",
"metadata": {},
"outputs": [],
"source": [
"## Loading dataset\n",
"\n",
"data= pd.read_csv(\"Desktop/Pandas/Sepsis/Paitients_Files_Train.csv\")\n",
"\n",
"data_test= pd.read_csv(\"Desktop/Pandas/Sepsis/Paitients_Files_Test.csv\")\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "67ca2509",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" ID | \n",
" PRG | \n",
" PL | \n",
" PR | \n",
" SK | \n",
" TS | \n",
" M11 | \n",
" BD2 | \n",
" Age | \n",
" Insurance | \n",
" Sepssis | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" ICU200010 | \n",
" 6 | \n",
" 148 | \n",
" 72 | \n",
" 35 | \n",
" 0 | \n",
" 33.6 | \n",
" 0.627 | \n",
" 50 | \n",
" 0 | \n",
" Positive | \n",
"
\n",
" \n",
" 1 | \n",
" ICU200011 | \n",
" 1 | \n",
" 85 | \n",
" 66 | \n",
" 29 | \n",
" 0 | \n",
" 26.6 | \n",
" 0.351 | \n",
" 31 | \n",
" 0 | \n",
" Negative | \n",
"
\n",
" \n",
" 2 | \n",
" ICU200012 | \n",
" 8 | \n",
" 183 | \n",
" 64 | \n",
" 0 | \n",
" 0 | \n",
" 23.3 | \n",
" 0.672 | \n",
" 32 | \n",
" 1 | \n",
" Positive | \n",
"
\n",
" \n",
" 3 | \n",
" ICU200013 | \n",
" 1 | \n",
" 89 | \n",
" 66 | \n",
" 23 | \n",
" 94 | \n",
" 28.1 | \n",
" 0.167 | \n",
" 21 | \n",
" 1 | \n",
" Negative | \n",
"
\n",
" \n",
" 4 | \n",
" ICU200014 | \n",
" 0 | \n",
" 137 | \n",
" 40 | \n",
" 35 | \n",
" 168 | \n",
" 43.1 | \n",
" 2.288 | \n",
" 33 | \n",
" 1 | \n",
" Positive | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" ID PRG PL PR SK TS M11 BD2 Age Insurance Sepssis\n",
"0 ICU200010 6 148 72 35 0 33.6 0.627 50 0 Positive\n",
"1 ICU200011 1 85 66 29 0 26.6 0.351 31 0 Negative\n",
"2 ICU200012 8 183 64 0 0 23.3 0.672 32 1 Positive\n",
"3 ICU200013 1 89 66 23 94 28.1 0.167 21 1 Negative\n",
"4 ICU200014 0 137 40 35 168 43.1 2.288 33 1 Positive"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.head()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "b124309f",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" ID | \n",
" PRG | \n",
" PL | \n",
" PR | \n",
" SK | \n",
" TS | \n",
" M11 | \n",
" BD2 | \n",
" Age | \n",
" Insurance | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" ICU200609 | \n",
" 1 | \n",
" 109 | \n",
" 38 | \n",
" 18 | \n",
" 120 | \n",
" 23.1 | \n",
" 0.407 | \n",
" 26 | \n",
" 1 | \n",
"
\n",
" \n",
" 1 | \n",
" ICU200610 | \n",
" 1 | \n",
" 108 | \n",
" 88 | \n",
" 19 | \n",
" 0 | \n",
" 27.1 | \n",
" 0.400 | \n",
" 24 | \n",
" 1 | \n",
"
\n",
" \n",
" 2 | \n",
" ICU200611 | \n",
" 6 | \n",
" 96 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 23.7 | \n",
" 0.190 | \n",
" 28 | \n",
" 1 | \n",
"
\n",
" \n",
" 3 | \n",
" ICU200612 | \n",
" 1 | \n",
" 124 | \n",
" 74 | \n",
" 36 | \n",
" 0 | \n",
" 27.8 | \n",
" 0.100 | \n",
" 30 | \n",
" 1 | \n",
"
\n",
" \n",
" 4 | \n",
" ICU200613 | \n",
" 7 | \n",
" 150 | \n",
" 78 | \n",
" 29 | \n",
" 126 | \n",
" 35.2 | \n",
" 0.692 | \n",
" 54 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" ID PRG PL PR SK TS M11 BD2 Age Insurance\n",
"0 ICU200609 1 109 38 18 120 23.1 0.407 26 1\n",
"1 ICU200610 1 108 88 19 0 27.1 0.400 24 1\n",
"2 ICU200611 6 96 0 0 0 23.7 0.190 28 1\n",
"3 ICU200612 1 124 74 36 0 27.8 0.100 30 1\n",
"4 ICU200613 7 150 78 29 126 35.2 0.692 54 0"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data_test.head()"
]
},
{
"cell_type": "markdown",
"id": "475b41ee",
"metadata": {},
"source": [
"### 2.1 Checking Data information"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "932555fd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"RangeIndex: 599 entries, 0 to 598\n",
"Data columns (total 11 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 ID 599 non-null object \n",
" 1 PRG 599 non-null int64 \n",
" 2 PL 599 non-null int64 \n",
" 3 PR 599 non-null int64 \n",
" 4 SK 599 non-null int64 \n",
" 5 TS 599 non-null int64 \n",
" 6 M11 599 non-null float64\n",
" 7 BD2 599 non-null float64\n",
" 8 Age 599 non-null int64 \n",
" 9 Insurance 599 non-null int64 \n",
" 10 Sepssis 599 non-null object \n",
"dtypes: float64(2), int64(7), object(2)\n",
"memory usage: 51.6+ KB\n"
]
}
],
"source": [
"data.info()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "dbd79244",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ID 0\n",
"PRG 0\n",
"PL 0\n",
"PR 0\n",
"SK 0\n",
"TS 0\n",
"M11 0\n",
"BD2 0\n",
"Age 0\n",
"Insurance 0\n",
"Sepssis 0\n",
"dtype: int64"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.isna().sum()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "8a8757c0",
"metadata": {},
"outputs": [],
"source": [
"## there are no missing values; however, Sepsis feature is mispelt as 'Sepssis'; therefore, we will go ahead and rename it \n",
"\n",
"data.rename(columns= {\"Sepssis\":\"Sepsis\"}, inplace= True)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "937bb785",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['ID', 'PRG', 'PL', 'PR', 'SK', 'TS', 'M11', 'BD2', 'Age', 'Insurance',\n",
" 'Sepsis'],\n",
" dtype='object')"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.columns"
]
},
{
"cell_type": "markdown",
"id": "1c3076e0",
"metadata": {},
"source": [
"### 2.2 Getting a Describtion of My Dataset"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "617477f6",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" PRG | \n",
" PL | \n",
" PR | \n",
" SK | \n",
" TS | \n",
" M11 | \n",
" BD2 | \n",
" Age | \n",
" Insurance | \n",
"
\n",
" \n",
" \n",
" \n",
" count | \n",
" 599.000000 | \n",
" 599.000000 | \n",
" 599.000000 | \n",
" 599.000000 | \n",
" 599.000000 | \n",
" 599.000000 | \n",
" 599.000000 | \n",
" 599.000000 | \n",
" 599.000000 | \n",
"
\n",
" \n",
" mean | \n",
" 3.824708 | \n",
" 120.153589 | \n",
" 68.732888 | \n",
" 20.562604 | \n",
" 79.460768 | \n",
" 31.920033 | \n",
" 0.481187 | \n",
" 33.290484 | \n",
" 0.686144 | \n",
"
\n",
" \n",
" std | \n",
" 3.362839 | \n",
" 32.682364 | \n",
" 19.335675 | \n",
" 16.017622 | \n",
" 116.576176 | \n",
" 8.008227 | \n",
" 0.337552 | \n",
" 11.828446 | \n",
" 0.464447 | \n",
"
\n",
" \n",
" min | \n",
" 0.000000 | \n",
" 0.000000 | \n",
" 0.000000 | \n",
" 0.000000 | \n",
" 0.000000 | \n",
" 0.000000 | \n",
" 0.078000 | \n",
" 21.000000 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" 25% | \n",
" 1.000000 | \n",
" 99.000000 | \n",
" 64.000000 | \n",
" 0.000000 | \n",
" 0.000000 | \n",
" 27.100000 | \n",
" 0.248000 | \n",
" 24.000000 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" 50% | \n",
" 3.000000 | \n",
" 116.000000 | \n",
" 70.000000 | \n",
" 23.000000 | \n",
" 36.000000 | \n",
" 32.000000 | \n",
" 0.383000 | \n",
" 29.000000 | \n",
" 1.000000 | \n",
"
\n",
" \n",
" 75% | \n",
" 6.000000 | \n",
" 140.000000 | \n",
" 80.000000 | \n",
" 32.000000 | \n",
" 123.500000 | \n",
" 36.550000 | \n",
" 0.647000 | \n",
" 40.000000 | \n",
" 1.000000 | \n",
"
\n",
" \n",
" max | \n",
" 17.000000 | \n",
" 198.000000 | \n",
" 122.000000 | \n",
" 99.000000 | \n",
" 846.000000 | \n",
" 67.100000 | \n",
" 2.420000 | \n",
" 81.000000 | \n",
" 1.000000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" PRG PL PR SK TS M11 \\\n",
"count 599.000000 599.000000 599.000000 599.000000 599.000000 599.000000 \n",
"mean 3.824708 120.153589 68.732888 20.562604 79.460768 31.920033 \n",
"std 3.362839 32.682364 19.335675 16.017622 116.576176 8.008227 \n",
"min 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
"25% 1.000000 99.000000 64.000000 0.000000 0.000000 27.100000 \n",
"50% 3.000000 116.000000 70.000000 23.000000 36.000000 32.000000 \n",
"75% 6.000000 140.000000 80.000000 32.000000 123.500000 36.550000 \n",
"max 17.000000 198.000000 122.000000 99.000000 846.000000 67.100000 \n",
"\n",
" BD2 Age Insurance \n",
"count 599.000000 599.000000 599.000000 \n",
"mean 0.481187 33.290484 0.686144 \n",
"std 0.337552 11.828446 0.464447 \n",
"min 0.078000 21.000000 0.000000 \n",
"25% 0.248000 24.000000 0.000000 \n",
"50% 0.383000 29.000000 1.000000 \n",
"75% 0.647000 40.000000 1.000000 \n",
"max 2.420000 81.000000 1.000000 "
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.describe()"
]
},
{
"cell_type": "markdown",
"id": "e6dee478",
"metadata": {},
"source": [
"### 2.3 Univariate Analysis "
]
},
{
"cell_type": "markdown",
"id": "80cc414a",
"metadata": {},
"source": [
"#### 2.3.1 Histogram"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "58a12832",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[, ,\n",
" ],\n",
" [, ,\n",
" ],\n",
" [, ,\n",
" ]], dtype=object)"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0QAAANECAYAAACQGe8uAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC4BUlEQVR4nOzdeXgUZbr//0/WTiJ0YoCkEyUQXFhkPYmEjKhIQhYQReIZUVRQBkYm8SvGFY+yqjgM4wKDMM6loDMgygyiIgItCLiELUdUFhngoKDSQckJISChSer3h7/0sU0CCemkl3q/rqsuqaqnq+67l8e+U13PE2QYhiEAAAAAMKFgbwcAAAAAAN5CQQQAAADAtCiIAAAAAJgWBREAAAAA06IgAgAAAGBaFEQAAAAATIuCCAAAAIBpURABAAAAMC0KIgAAAACmRUEEAAAAwLQoiNAgCxcuVFBQkGuJiIjQ5ZdfroKCApWUlEiS1q9f79YmJCREcXFxuvnmm7V79+56j/3RRx/pt7/9rS666CKFh4crOjpaaWlpmjZtmuvYAMyrMf3PP//5Ty9HC8AfNOf3GvifUG8HAP8ybdo0JScn69SpU/r44481b948rVy5Ujt27HC1+X//7//pyiuvlNPp1BdffKH58+dr/fr12rFjh2w2m9vxJk2apOnTp6tTp04aPXq0OnXqpFOnTqm4uFh//vOf9eqrr2r//v0tnSYAH9SQ/gcAGsPT32vgnyiI0Ci5ublKTU2VJP3ud79TmzZt9Oyzz+rtt99WQkKCJOnqq6/WzTff7HpM586dNX78eL322mt6+OGHXdvfeOMNTZ8+Xb/97W/197//XeHh4W7neu655/Tcc8+1QFYA/EFD+h8AaAxPfq+B/+Inc2iSgQMHSpIOHDhQb5urr75akmpd6Zk0aZLatm2rl19+uVYxJEnR0dGaMmWK54IFEFAa0v8AQGM05XsN/BcFEZqkpjNo06ZNvW2+/vprSdKFF17o2vbvf/9b//73vzVs2DC1atWqWWMEEJga0v8AQGOc7/ca+Dd+ModGOXbsmH788UedOnVKn3zyiaZNm6bIyEhdf/312rt3ryTp+PHj+vHHH12/tZ0wYYKCgoKUl5fnOs5XX30lSerevbvb8Q3D0NGjR922xcTEKDSUtypgdg3pfwCgMTz1vQb+jW+ZaJTMzEy39Q4dOmjRokW66KKLXB3H3Xff7damXbt2+vvf/64rr7zSta28vFySal0dOnbsmNq1a+e2bevWra7f9wIwr4b0PwDQGJ76XgP/RkGERpk7d64uv/xyhYaGKj4+Xp07d1ZwsPsvLydNmqSrr75aFRUVeuutt7RkyZJabVq3bi1JqqiocNveqlUr2e12SdKaNWv0pz/9qRmzAeBPGtL/AEBjeOp7DfwbBREapW/fvue8WtOjRw/XX1yGDRumkydPauzYserfv7/at28vSerSpYsk1RouNzQ01PXYb7/91tPhA/BjDel/AKAxPPW9Bv6N8hbN7plnntGpU6f01FNPubZ17txZl112mZYvX64TJ054MToAAICGq+t7DfwbBRGa3SWXXKK8vDwtXLhQDofDtX3KlCn68ccfNXbsWDmdzlqPMwyjJcMEAAA4p/q+18B/8ZM5tIiHHnpIb775pp5//nk988wzkqTbbrtNO3bs0IwZM7RlyxaNGDFCycnJOnHihHbs2KHXX39drVu3ZlhLAA32r3/9yzWK5S+NGjWKn7YA8Ji6vtfAf1EQoUWkpqZqwIABmjdvniZOnKjo6GhJ0tNPP63s7Gz95S9/0SuvvKIff/xRkZGRuvzyy/XAAw/onnvukc1m83L0APzFkiVL6tw+YMAACiIAHlPf9xr4pyCD3yUBAAAAMCnuIQIAAABgWhREAAAAAEyLgggAAACAaVEQAQAAADAtCiIAAAAApkVBBAAAAMC0GjUP0YwZM7Rs2TJ99dVXioyM1G9+8xv98Y9/VOfOnV1tTp06pQceeEBLlixRZWWlsrOz9eKLLyo+Pt7V5uDBgxo/frw+/PBDtWrVSqNGjdKMGTMUGtqwcKqrq/X999+rdevWCgoKakwKAM7CMAwdP35ciYmJCg42599L6F+A5kH/Qv8CNJcm9y9GI2RnZxsLFiwwduzYYWzfvt0YPHiwkZSUZFRUVLja3HPPPUb79u2NtWvXGtu2bTP69etn/OY3v3HtP3PmjNG9e3cjMzPT+Oyzz4yVK1cabdu2NSZOnNjgOA4dOmRIYmFhaabl0KFDjekaAgr9CwtL8y70L95/DVhYAnU53/6lSROz/vDDD4qLi9OGDRt0zTXX6NixY2rXrp0WL16sm2++WZL01VdfqWvXrioqKlK/fv30/vvv6/rrr9f333/vumo0f/58PfLII/rhhx8UHh5+zvMeO3ZMMTExOnTokKxWa73tnE6n1qxZo6ysLIWFhZ1vmj7NDDlK5NlSysvL1b59e5WVlZl21m0z9S+BkIMUGHmYIQf6F3P1L97E89c0/vj8NbV/adRP5n7t2LFjkqTY2FhJUnFxsZxOpzIzM11tunTpoqSkJFdBVFRUpB49erj9hC47O1vjx4/Xzp071adPn1rnqaysVGVlpWv9+PHjkqTIyEhFRkbWn1xoqKKiohQZGek3L2hjmSFHiTxbitPplCRT/5SjJner1XrOLyxRUVGyWq1++54MhBykwMjDTDnQv5ijf/Emnr+m8efn73z7l/MuiKqrqzVhwgRdddVV6t69uyTJ4XAoPDxcMTExbm3j4+PlcDhcbX5ZDNXsr9lXlxkzZmjq1Km1tq9Zs0ZRUVHnjNVut5+zjb8zQ44SeTa3kydPeuW8AAAA3nLeBVF+fr527Nihjz/+2JPx1GnixIkqLCx0rddcFsvKyjrnX1jsdrsGDRrkdxVuQ5khR4k8W0p5eXmLnxMAAMCbzqsgKigo0IoVK7Rx40ZdfPHFru02m02nT59WWVmZ21WikpIS2Ww2V5stW7a4Ha+kpMS1ry4Wi0UWi6XW9rCwsAZ9aWxoO39mhhwl8myJ8wIAAJhJo8alMwxDBQUFeuutt7Ru3TolJye77U9JSVFYWJjWrl3r2rZnzx4dPHhQ6enpkqT09HR9+eWXOnLkiKuN3W6X1WpVt27dmpILAAAAADRKo64Q5efna/HixXr77bfVunVr1z0/0dHRioyMVHR0tMaMGaPCwkLFxsbKarXq3nvvVXp6uvr16ydJysrKUrdu3XTHHXdo5syZcjgcevzxx5Wfn1/nVSAAAAAAaC6NKojmzZsnSRowYIDb9gULFmj06NGSpOeee07BwcHKy8tzm5i1RkhIiFasWKHx48crPT1dF1xwgUaNGqVp06Y1LRMAAAAAaKRGFUQNmbIoIiJCc+fO1dy5c+tt06FDB61cubIxpwYAAAAAj2vSPET+ovuU1aqsavq8B18/M8QD0QAAPKn7lNWa2dczfT39PIAaHR99z6PHo3/xXY0aVAEAAAAAAgkFEQAAAADToiACAAAAYFoURAAAAABMi4IIAAAAgGlREAEAAAAwLQoiAAAAAKZFQQQAAADAtCiIAAAAAJgWBREAAAAA06IgAgAAAGBaFEQAAAAATIuCCAAAAIBpURABAAAAMC0KIgAAAACmRUEEAAAAwLQoiAD4hI0bN2ro0KFKTExUUFCQli9f7rZ/9OjRCgoKcltycnLc2pSWlmrkyJGyWq2KiYnRmDFjVFFR0YJZAPBFM2bM0JVXXqnWrVsrLi5Ow4YN0549e9zanDp1Svn5+WrTpo1atWqlvLw8lZSUuLU5ePCghgwZoqioKMXFxemhhx7SmTNnWjIVAM2AggiATzhx4oR69eqluXPn1tsmJydHhw8fdi2vv/662/6RI0dq586dstvtWrFihTZu3Khx48Y1d+gAfNyGDRuUn5+vTZs2yW63y+l0KisrSydOnHC1uf/++/Xuu+9q6dKl2rBhg77//nsNHz7ctb+qqkpDhgzR6dOn9emnn+rVV1/VwoULNWnSJG+kBMCDQr0dAABIUm5urnJzc8/axmKxyGaz1blv9+7dWrVqlbZu3arU1FRJ0pw5czR48GDNmjVLiYmJHo8ZgH9YtWqV2/rChQsVFxen4uJiXXPNNTp27JhefvllLV68WAMHDpQkLViwQF27dtWmTZvUr18/rVmzRrt27dIHH3yg+Ph49e7dW9OnT9cjjzyiKVOmKDw83BupAfAACiIAfmP9+vWKi4vThRdeqIEDB+rJJ59UmzZtJElFRUWKiYlxFUOSlJmZqeDgYG3evFk33XRTncesrKxUZWWla728vFyS5HQ65XQ6642lZt/Z2vi6QMhBkizBhtt/m8Jbz0UgvBbnysGXcjt27JgkKTY2VpJUXFwsp9OpzMxMV5suXbooKSlJRUVF6tevn4qKitSjRw/Fx8e72mRnZ2v8+PHauXOn+vTpU+s8Zu5fvMlTz58lpOl9yi/5y+vpj++/psZKQQTAL+Tk5Gj48OFKTk7W/v379dhjjyk3N1dFRUUKCQmRw+FQXFyc22NCQ0MVGxsrh8NR73FnzJihqVOn1tq+Zs0aRUVFnTMuu93e+GR8jL/nMD215r/VTT7WypUrm3yMpvD310KqP4eTJ0+2cCR1q66u1oQJE3TVVVepe/fukiSHw6Hw8HDFxMS4tY2Pj3f1Hw6Hw60Yqtlfs68u9C/e1dTnb2ZfDwXy//N2/9JY/vT+a2r/QkEEwC+MGDHC9e8ePXqoZ8+euuSSS7R+/XplZGSc93EnTpyowsJC13p5ebnat2+vrKwsWa3Weh/ndDplt9s1aNAghYWFnff5vSkQcpCklGmrND21Wk9sC1ZldVCTjrVjSraHomqcQHgtzpVDzdURb8vPz9eOHTv08ccfN/u5zNy/eJOnnr/uU1Z7MCrv9S+N5Y/vv6b2LxREAPxSp06d1LZtW+3bt08ZGRmy2Ww6cuSIW5szZ86otLS03vuOpJ/vS7JYLLW2h4WFNeh/BA1t58v8PYeaIqiyOkiVVU0riLz9PPj7ayHVn4Mv5FVQUOAacOXiiy92bbfZbDp9+rTKysrcrhKVlJS4+g+bzaYtW7a4Ha9mFLr6+hj6F+9q6vPX1P7k1/zttfSn919T42SUOQB+6dtvv9XRo0eVkJAgSUpPT1dZWZmKi4tdbdatW6fq6mqlpaV5K0wAPsAwDBUUFOitt97SunXrlJyc7LY/JSVFYWFhWrt2rWvbnj17dPDgQaWnp0v6uY/58ssv3f7wYrfbZbVa1a1bt5ZJBECz4AoRAJ9QUVGhffv2udYPHDig7du3KzY2VrGxsZo6dary8vJks9m0f/9+Pfzww7r00kuVnf3zTxC6du2qnJwcjR07VvPnz5fT6VRBQYFGjBjBCHOAyeXn52vx4sV6++231bp1a9c9P9HR0YqMjFR0dLTGjBmjwsJCxcbGymq16t5771V6err69esnScrKylK3bt10xx13aObMmXI4HHr88ceVn59f51UgAP6DK0QAfMK2bdvUp08f10hNhYWF6tOnjyZNmqSQkBB98cUXuuGGG3T55ZdrzJgxSklJ0UcffeT2RWTRokXq0qWLMjIyNHjwYPXv318vvfSSt1IC4CPmzZunY8eOacCAAUpISHAtb7zxhqvNc889p+uvv155eXm65pprZLPZtGzZMtf+kJAQrVixQiEhIUpPT9ftt9+uO++8U9OmTfNGSgA8iCtEAHzCgAEDZBj1D3G6evW5b26NjY3V4sWLPRkWgABwtr6lRkREhObOnXvWyaE7dOjgdyOFATg3rhABAAAAMC0KIgAAAACmRUEEAAAAwLQoiAAAAACYFgURAAAAANOiIAIAAABgWhREAAAAAEyLgggAAACAaVEQAQAAADAtCiIAAAAAphXq7QAAAACAQNfx0fc8eryvnxni0eOZGVeIAAAAAJgWBREAAAAA02p0QbRx40YNHTpUiYmJCgoK0vLly932jx49WkFBQW5LTk6OW5vS0lKNHDlSVqtVMTExGjNmjCoqKpqUCAAAAAA0VqMLohMnTqhXr16aO3duvW1ycnJ0+PBh1/L666+77R85cqR27twpu92uFStWaOPGjRo3blzjowcAAACAJmj0oAq5ubnKzc09axuLxSKbzVbnvt27d2vVqlXaunWrUlNTJUlz5szR4MGDNWvWLCUmJjY2JAAAAAA4L81yD9H69esVFxenzp07a/z48Tp69KhrX1FRkWJiYlzFkCRlZmYqODhYmzdvbo5wAAAAAKBOHh92OycnR8OHD1dycrL279+vxx57TLm5uSoqKlJISIgcDofi4uLcgwgNVWxsrBwOR53HrKysVGVlpWu9vLxckuR0OuV0OuuNpWafJdhoalpux/MlNTH5YmyeRJ4te34AAACz8HhBNGLECNe/e/TooZ49e+qSSy7R+vXrlZGRcV7HnDFjhqZOnVpr+5o1axQVFXXOx09PrT6v8/7aypUrPXKc5mC3270dQosgz+Z18uRJr5wXAADAW5p9YtZOnTqpbdu22rdvnzIyMmSz2XTkyBG3NmfOnFFpaWm99x1NnDhRhYWFrvXy8nK1b99eWVlZslqt9Z7b6XTKbrfriW3BqqwOanIuO6ZkN/kYnlaT46BBgxQWFubtcJoNebaMmquvAAAAZtHsBdG3336ro0ePKiEhQZKUnp6usrIyFRcXKyUlRZK0bt06VVdXKy0trc5jWCwWWSyWWtvDwsIa9KWxsjpIlVVNL4h8+Yt4Q58Lf0eezX9eAAAAM2l0QVRRUaF9+/a51g8cOKDt27crNjZWsbGxmjp1qvLy8mSz2bR//349/PDDuvTSS5Wd/fPVla5duyonJ0djx47V/Pnz5XQ6VVBQoBEjRjDCHAAAAIAW1ehR5rZt26Y+ffqoT58+kqTCwkL16dNHkyZNUkhIiL744gvdcMMNuvzyyzVmzBilpKToo48+crvCs2jRInXp0kUZGRkaPHiw+vfvr5deeslzWQEAAABAAzT6CtGAAQNkGPWP2rZ69epzHiM2NlaLFy9u7KkBAAAAwKOaZR4iAAAAAPAHzT6oAgAA/qLjo+959HhfPzPEo8cDAHgeV4gAAAAAmBYFEQAAAADToiACAAAAYFoURAAAAABMi4IIAAAAgGlREAEAAAAwLQoiAAAAAKZFQQQAAADAtJiYtRGYsA8AAAAILFwhAgAAAW3jxo0aOnSoEhMTFRQUpOXLl7vtHz16tIKCgtyWnJwctzalpaUaOXKkrFarYmJiNGbMGFVUVLRgFgCaCwURAAAIaCdOnFCvXr00d+7cetvk5OTo8OHDruX111932z9y5Ejt3LlTdrtdK1as0MaNGzVu3LjmDh1AC+AncwAAIKDl5uYqNzf3rG0sFotsNlud+3bv3q1Vq1Zp69atSk1NlSTNmTNHgwcP1qxZs5SYmOjxmAG0HAoiAABgeuvXr1dcXJwuvPBCDRw4UE8++aTatGkjSSoqKlJMTIyrGJKkzMxMBQcHa/PmzbrpppvqPGZlZaUqKytd6+Xl5ZIkp9Mpp9NZbyw1+87WBvXz1PNnCTE8EU6zaa73hz++/5oaKwURAAAwtZycHA0fPlzJycnav3+/HnvsMeXm5qqoqEghISFyOByKi4tze0xoaKhiY2PlcDjqPe6MGTM0derUWtvXrFmjqKioc8Zlt9sbnwxcmvr8zezroUCaycqVK5v1+P70/jt58mSTHk9BBAAATG3EiBGuf/fo0UM9e/bUJZdcovXr1ysjI+O8jztx4kQVFha61svLy9W+fXtlZWXJarXW+zin0ym73a5BgwYpLCzsvM9vVp56/rpPWe3BqDxvx5TsZjmuP77/aq6+ni8KIgBAi/L0FAaWEI8eDlCnTp3Utm1b7du3TxkZGbLZbDpy5IhbmzNnzqi0tLTe+46kn+9LslgstbaHhYU16ItmQ9uhbk19/iqrgjwYjec193vDn95/TY2TUeYAAAB+4dtvv9XRo0eVkJAgSUpPT1dZWZmKi4tdbdatW6fq6mqlpaV5K0wAHsIVIgAAENAqKiq0b98+1/qBAwe0fft2xcbGKjY2VlOnTlVeXp5sNpv279+vhx9+WJdeeqmys3/+SVLXrl2Vk5OjsWPHav78+XI6nSooKNCIESMYYQ4IAFwhAgAAAW3btm3q06eP+vTpI0kqLCxUnz59NGnSJIWEhOiLL77QDTfcoMsvv1xjxoxRSkqKPvroI7efuy1atEhdunRRRkaGBg8erP79++ull17yVkoAPIgrRAAAIKANGDBAhlH/EMqrV5/75vnY2FgtXrzYk2EB8BFcIQIAAABgWhREAAAAAEyLgggAAACAaVEQAQAAADAtCiIAPmHjxo0aOnSoEhMTFRQUpOXLl7vtNwxDkyZNUkJCgiIjI5WZmam9e/e6tSktLdXIkSNltVoVExOjMWPGqKKiogWzAAAA/oaCCIBPOHHihHr16qW5c+fWuX/mzJmaPXu25s+fr82bN+uCCy5Qdna2Tp065WozcuRI7dy5U3a7XStWrNDGjRs1bty4lkoBAAD4IYbdBuATcnNzlZubW+c+wzD0/PPP6/HHH9eNN94oSXrttdcUHx+v5cuXa8SIEdq9e7dWrVqlrVu3KjU1VZI0Z84cDR48WLNmzWLyRAAAUCcKIgA+78CBA3I4HMrMzHRti46OVlpamoqKijRixAgVFRUpJibGVQxJUmZmpoKDg7V582bddNNNdR67srJSlZWVrvXy8nJJktPplNPprDemmn1na+PrvJWDJaT++WDO63jBhtt/fUlDn1szvJ/8OTcAgY2CCIDPczgckqT4+Hi37fHx8a59DodDcXFxbvtDQ0MVGxvralOXGTNmaOrUqbW2r1mzRlFRUeeMzW63n7ONr2vpHGb2bZ7jTk+tbp4DN8HKlSsb1T6Q308nT55s4UgAoGEoiACY2sSJE1VYWOhaLy8vV/v27ZWVlSWr1Vrv45xOp+x2uwYNGqSwsLCWCNXjvJVD9ymrPXo8S7Ch6anVemJbsCqrgzx67KbaMSW7Qe3M8H6qufoKAL6GggiAz7PZbJKkkpISJSQkuLaXlJSod+/erjZHjhxxe9yZM2dUWlrqenxdLBaLLBZLre1hYWEN+mLa0Ha+rKVzqKxqnqKlsjqo2Y59vhr7vAby+8nf8wIQuBhlDoDPS05Ols1m09q1a13bysvLtXnzZqWnp0uS0tPTVVZWpuLiYlebdevWqbq6WmlpaS0eMwAA8A9cIQLgEyoqKrRv3z7X+oEDB7R9+3bFxsYqKSlJEyZM0JNPPqnLLrtMycnJeuKJJ5SYmKhhw4ZJkrp27aqcnByNHTtW8+fPl9PpVEFBgUaMGMEIcwAAoF4URAB8wrZt23Tddde51mvu6xk1apQWLlyohx9+WCdOnNC4ceNUVlam/v37a9WqVYqIiHA9ZtGiRSooKFBGRoaCg4OVl5en2bNnt3guAADAf1AQAfAJAwYMkGHUP2xyUFCQpk2bpmnTptXbJjY2VosXL26O8AAAQIDiHiIAAAAApkVBBAAAAMC0KIgAAAAAmBYFEQAAAADToiACAAAAYFqNLog2btyooUOHKjExUUFBQVq+fLnbfsMwNGnSJCUkJCgyMlKZmZnau3evW5vS0lKNHDlSVqtVMTExGjNmjCoqKpqUCAAAAAA0VqOH3T5x4oR69eqlu+++W8OHD6+1f+bMmZo9e7ZeffVV1+SJ2dnZ2rVrl2u+kJEjR+rw4cOy2+1yOp266667NG7cONMNl9vx0feafAxLiKGZfaXuU1Zrz1PXeyAqAAAAwDwaXRDl5uYqNze3zn2GYej555/X448/rhtvvFGS9Nprryk+Pl7Lly/XiBEjtHv3bq1atUpbt25VamqqJGnOnDkaPHiwZs2axYzyAAAAAFqMR+8hOnDggBwOhzIzM13boqOjlZaWpqKiIklSUVGRYmJiXMWQJGVmZio4OFibN2/2ZDgAAAAAcFaNvkJ0Ng6HQ5IUHx/vtj0+Pt61z+FwKC4uzj2I0FDFxsa62vxaZWWlKisrXevl5eWSJKfTKafTWW88NfsswUYjM/EfNblZgo2zPhf+ria3QM5R8n6egf78AgAA/JpHC6LmMmPGDE2dOrXW9jVr1igqKuqcj5+eWt0cYfmU6anVWrlypbfDaHZ2u93bIbQIb+V58uRJr5wXAADAWzxaENlsNklSSUmJEhISXNtLSkrUu3dvV5sjR464Pe7MmTMqLS11Pf7XJk6cqMLCQtd6eXm52rdvr6ysLFmt1nrjcTqdstvtemJbsCqrg843LZ9mCTY0PbVaT2wLVvGkHG+H02xqXstBgwYpLCzM2+E0G2/nWXP1FQAAwCw8WhAlJyfLZrNp7dq1rgKovLxcmzdv1vjx4yVJ6enpKisrU3FxsVJSUiRJ69atU3V1tdLS0uo8rsVikcViqbU9LCysQV8aK6uDVFkVmAVRjcrqoIAuFGo09DX3d97K0wzPLQAAwC81uiCqqKjQvn37XOsHDhzQ9u3bFRsbq6SkJE2YMEFPPvmkLrvsMtew24mJiRo2bJgkqWvXrsrJydHYsWM1f/58OZ1OFRQUaMSIEYwwBwAAAKBFNbog2rZtm6677jrXes1P2UaNGqWFCxfq4Ycf1okTJzRu3DiVlZWpf//+WrVqlWsOIklatGiRCgoKlJGRoeDgYOXl5Wn27NkeSAcAAAAAGq7RBdGAAQNkGPWP2hYUFKRp06Zp2rRp9baJjY013SSsAAAAAHyPX4wyBwCAP+r46HsNamcJMTSzr9R9yup673n9+pkhngwNAPD/8+jErAAAAADgTyiIAAAAAJgWBREAAAhoGzdu1NChQ5WYmKigoCAtX77cbb9hGJo0aZISEhIUGRmpzMxM7d27161NaWmpRo4cKavVqpiYGI0ZM0YVFRUtmAWA5kJBBAAAAtqJEyfUq1cvzZ07t879M2fO1OzZszV//nxt3rxZF1xwgbKzs3Xq1ClXm5EjR2rnzp2y2+1asWKFNm7cqHHjxrVUCgCaEYMqAACAgJabm6vc3Nw69xmGoeeff16PP/64brzxRknSa6+9pvj4eC1fvlwjRozQ7t27tWrVKm3dulWpqamSpDlz5mjw4MGaNWsW8ygCfo4rRAAAwLQOHDggh8OhzMxM17bo6GilpaWpqKhIklRUVKSYmBhXMSRJmZmZCg4O1ubNm1s8ZgCexRUiAABgWg6HQ5IUHx/vtj0+Pt61z+FwKC4uzm1/aGioYmNjXW3qUllZqcrKStd6eXm5JMnpdMrpdNb7uJp9Z2uD+nnq+bOE1D/vpi9orveHP77/mhorBREAAEAzmDFjhqZOnVpr+5o1axQVFXXOx9vt9uYIyzSa+vzN7OuhQJrJypUrm/X4/vT+O3nyZJMeT0EEAABMy2azSZJKSkqUkJDg2l5SUqLevXu72hw5csTtcWfOnFFpaanr8XWZOHGiCgsLXevl5eVq3769srKyZLVa632c0+mU3W7XoEGDFBYWdj5pmZqnnr/uU1Z7MCrP2zElu1mO64/vv5qrr+eLgggAAJhWcnKybDab1q5d6yqAysvLtXnzZo0fP16SlJ6errKyMhUXFyslJUWStG7dOlVXVystLa3eY1ssFlksllrbw8LCGvRFs6HtULemPn+VVUEejMbzmvu94U/vv6bGSUEEAAACWkVFhfbt2+daP3DggLZv367Y2FglJSVpwoQJevLJJ3XZZZcpOTlZTzzxhBITEzVs2DBJUteuXZWTk6OxY8dq/vz5cjqdKigo0IgRIxhhDggAFEQAACCgbdu2Tdddd51rveZnbKNGjdLChQv18MMP68SJExo3bpzKysrUv39/rVq1ShEREa7HLFq0SAUFBcrIyFBwcLDy8vI0e/bsFs8FgOdREAEAgIA2YMAAGUb9I4YFBQVp2rRpmjZtWr1tYmNjtXjx4uYID4CXMQ8RAAAAANOiIAIAAABgWhREAAAAAEyLgggAAACAaVEQAQAAADAtCiIAAAAApkVBBAAAAMC0KIgAAAAAmBYFEQAAAADToiACAAAAYFoURAAAAABMi4IIAAAAgGmFejsA+KaOj77n0eN9/cwQjx4PAAAA8ASuEAEAAAAwLQoiAAAAAKbFT+YAAAAQEDo++p4sIYZm9pW6T1mtyqogb4cEP8AVIgAAAACmRUEEAAAAwLQoiAAAAACYFgURAAAAANOiIALgN6ZMmaKgoCC3pUuXLq79p06dUn5+vtq0aaNWrVopLy9PJSUlXowYAAD4OgoiAH7liiuu0OHDh13Lxx9/7Np3//33691339XSpUu1YcMGff/99xo+fLgXowUAAL6OYbcB+JXQ0FDZbLZa248dO6aXX35Zixcv1sCBAyVJCxYsUNeuXbVp0yb169evpUMFAAB+gIIIgF/Zu3evEhMTFRERofT0dM2YMUNJSUkqLi6W0+lUZmamq22XLl2UlJSkoqKieguiyspKVVZWutbLy8slSU6nU06ns944avadrY2v81YOlhDDs8cLNtz+648akoOvv9fO9X7y9fgBmBcFEQC/kZaWpoULF6pz5846fPiwpk6dqquvvlo7duyQw+FQeHi4YmJi3B4THx8vh8NR7zFnzJihqVOn1tq+Zs0aRUVFnTMmu93e6Dx8TUvnMLNv8xx3emp18xy4BZ0th5UrV7ZgJOevvvfTyZMnWzgSAGgYCiIAfiM3N9f17549eyotLU0dOnTQm2++qcjIyPM65sSJE1VYWOhaLy8vV/v27ZWVlSWr1Vrv45xOp+x2uwYNGqSwsLDzOre3eSuH7lNWe/R4lmBD01Or9cS2YFVW++es9A3JYceU7BaOqnHO9X6qufoKAL6GggiA34qJidHll1+uffv2adCgQTp9+rTKysrcrhKVlJTUec9RDYvFIovFUmt7WFhYg4qEhrbzZS2dQ2VV8xQtldVBzXbslnK2HPzlfVbf+8lf4gdgPowyB8BvVVRUaP/+/UpISFBKSorCwsK0du1a1/49e/bo4MGDSk9P92KUAADAl3m8IGKeEADN5cEHH9SGDRv09ddf69NPP9VNN92kkJAQ3XrrrYqOjtaYMWNUWFioDz/8UMXFxbrrrruUnp7OCHMAAKBezfKTuSuuuEIffPDB/50k9P9Oc//99+u9997T0qVLFR0drYKCAg0fPlyffPJJc4QCIIB8++23uvXWW3X06FG1a9dO/fv316ZNm9SuXTtJ0nPPPafg4GDl5eWpsrJS2dnZevHFF70cNQAAntfx0fc8dqyvnxnisWP5o2YpiJgnBEBzWLJkyVn3R0REaO7cuZo7d24LRQQAAPxdsxREvjZPiD/PTXEuv5y7wpNzPHh6npCmxhYIc740hLfzDPTnFwAA4Nc8XhD54jwhgTA3xblMT6326BwVnp4nxFOxBcKcLw3hrTyZJwQAAJiNxwsiX5wnxJ/npjiXX85dUTwpx2PH9fQ8IU2dPyMQ5nxpCG/nyTwhAADAbJp9HiJfmCckEOamOJfK6iCPfoH29PPlqdgCYc6XhvBWnmZ4bgEAAH6p2QuimnlC7rjjDrd5QvLy8iQxTwgAAN7ACFXupkyZUuvn+Z07d9ZXX30l6edpQx544AEtWbLEbRTL+Ph4b4QLwIM8XhA9+OCDGjp0qDp06KDvv/9ekydPrnOekNjYWFmtVt17773MEwIAALyOaUMAc/J4QcQ8IQAAwB8xbQhgTh4viJgnBAAA+CNfmzaEqRAazxJiuE1Jgob55XvNH99/TY212e8hAgAATefJe35Qmy9OG2KWqSY86ZfThphh2hVPqWt6FH96/zV12hAKIgAAYHq+OG1IoE810Ry6T1ntNiVJoE674mm/nB7FH99/TZ02hIIIAADgV3xh2hCzTDXhSb+cNsQM0654Sl3vM396/zU1zmAPxQEAABAwaqYNSUhIcJs2pAbThgCBgytEAADA9Jg2BDAvCiIAAGB6TBsCmBcFEQAAMD2mDQHMi4IogDAkKwAAANA4FERoEU0t1iwhhmb2/Xk4zT1PXe+hqAAAAGB2jDIHAAAAwLQoiAAAAACYFj+ZAwCcFfcnAgACGVeIAAAAAJgWBREAAAAA06IgAgAAAGBaFEQAAAAATIuCCAAAAIBpURABAAAAMC0KIgAAAACmRUEEAAAAwLQoiAAAAACYVqi3AwAAAEBt3aesVmVVUJOP8/UzQzwQDRC4uEIEAAAAwLQoiAAAAACYFgURAAAAANOiIAIAAABgWhREAAAAAEyLgggAAACAaVEQAQAAADAtCiIAAAAApsXErDC9jo++57FjMfkdAACAf+EKEQAAAADToiACAAAAYFoURAAAAABMi4IIAAAAgGlREAEAAAAwLQoiAAAAAKbFsNsAAADwCk9OfYHz98vXwRJiaGZfqfuU1aqsCjqv4/nbNCRcIQIAAABgWlwhgt/hr0kAAADwFAoiAGiCpvyk4Jf87ecFAAAECn4yBwAAAMC0vFoQzZ07Vx07dlRERITS0tK0ZcsWb4YDIEDQtwBoLvQvQODx2k/m3njjDRUWFmr+/PlKS0vT888/r+zsbO3Zs0dxcXHeCgtokqbe3/TrkV34GVXj0bf8rCHvRU+MJASYCf0L0DCevN+7Jb4Lea0gevbZZzV27FjdddddkqT58+frvffe0yuvvKJHH33UW2EB8HP0LQCaC/3LzxjcCIHGKwXR6dOnVVxcrIkTJ7q2BQcHKzMzU0VFRbXaV1ZWqrKy0rV+7NgxSVJpaamcTme953E6nTp58qRCncGqqg7Mv36GVhs6ebI6oHOUzJvnpQ++6dHjb56Ycdb9x48flyQZhuHR87aUxvYtku/0L0ePHm3yMX4p9MyJc7cJkM9VIOTh7zkcPXrU9Zk4evSowsLCarWhf/Fe/+Lp/5f4+ohc/v558jZfe/4a8v/HJvcvhhd89913hiTj008/ddv+0EMPGX379q3VfvLkyYYkFhaWFloOHTrUUt2BRzW2bzEM+hcWlpZe6F9YWFiaaznf/sXXi3xJ0sSJE1VYWOhar66uVmlpqdq0aaOgoPor1/LycrVv316HDh2S1WptiVBbnBlylMizpRiGoePHjysxMbHFz+0tZu5fAiEHKTDyMEMO9C/m6l+8ieevafzx+Wtq/+KVgqht27YKCQlRSUmJ2/aSkhLZbLZa7S0WiywWi9u2mJiYBp/ParX6zQt6vsyQo0SeLSE6Otor5/WExvYtEv2LFBg5SIGRR6DnQP9ivv7Fm3j+msbfnr+m9C9eGXY7PDxcKSkpWrt2rWtbdXW11q5dq/T0dG+EBCAA0LcAaC70L0Dg8tpP5goLCzVq1Cilpqaqb9++ev7553XixAnXyC0AcD7oWwA0F/oXIDB5rSC65ZZb9MMPP2jSpElyOBzq3bu3Vq1apfj4eI+dw2KxaPLkybUuVwcSM+QokScariX6FikwXqtAyEEKjDzIwT/Qv/gHnr+mMePzF2QYfjr+JQAAAAA0kVfuIQIAAAAAX0BBBAAAAMC0KIgAAAAAmBYFEQAAAADTCtiCaO7cuerYsaMiIiKUlpamLVu2eDskj5oyZYqCgoLcli5dung7rCbbuHGjhg4dqsTERAUFBWn58uVu+w3D0KRJk5SQkKDIyEhlZmZq79693gn2PJ0rx9GjR9d6bXNycrwTLOrkT/3LufqKU6dOKT8/X23atFGrVq2Ul5dXa+JJb/BEX1BaWqqRI0fKarUqJiZGY8aMUUVFhc/k0JDPurdzmDFjhq688kq1bt1acXFxGjZsmPbs2ePWpiHvoYMHD2rIkCGKiopSXFycHnroIZ05c6bF8vAn/tS/eJO/9m3eEgh9anMKyILojTfeUGFhoSZPnqz//u//Vq9evZSdna0jR454OzSPuuKKK3T48GHX8vHHH3s7pCY7ceKEevXqpblz59a5f+bMmZo9e7bmz5+vzZs364ILLlB2drZOnTrVwpGev3PlKEk5OTlur+3rr7/eghHibPyxfzlbX3H//ffr3Xff1dKlS7VhwwZ9//33Gj58uBej/Zkn+oKRI0dq586dstvtWrFihTZu3Khx48a1VAoe+ax7O4cNGzYoPz9fmzZtkt1ul9PpVFZWlk6cOOFqc673UFVVlYYMGaLTp0/r008/1auvvqqFCxdq0qRJLZaHv/DH/sWb/LFv85ZA6FOblRGA+vbta+Tn57vWq6qqjMTERGPGjBlejMqzJk+ebPTq1cvbYTQrScZbb73lWq+urjZsNpvxpz/9ybWtrKzMsFgsxuuvv+6FCJvu1zkahmGMGjXKuPHGG70SD87N3/qXs/UVZWVlRlhYmLF06VLXtt27dxuSjKKiohaK8NzOpy/YtWuXIcnYunWrq837779vBAUFGd99912LxV7jfD7rvpaDYRjGkSNHDEnGhg0bDMNo2Hto5cqVRnBwsOFwOFxt5s2bZ1itVqOysrJlE/Bx/ta/eFMg9G3eEgh9qqcF3BWi06dPq7i4WJmZma5twcHByszMVFFRkRcj87y9e/cqMTFRnTp10siRI3Xw4EFvh9SsDhw4IIfD4fbaRkdHKy0tLeBe2/Xr1ysuLk6dO3fW+PHjdfToUW+HBPlv/1JfX1FcXCyn0+mWT5cuXZSUlOTT+TSkLygqKlJMTIxSU1NdbTIzMxUcHKzNmze3eMz1Odtn3RdzOHbsmCQpNjZWUsPeQ0VFRerRo4fb5KXZ2dkqLy/Xzp07WzB63+av/Ys3BVrf5i2B1Keer4AriH788UdVVVXVmjU6Pj5eDofDS1F5XlpamhYuXKhVq1Zp3rx5OnDggK6++modP37c26E1m5rXL9Bf25ycHL322mtau3at/vjHP2rDhg3Kzc1VVVWVt0MzPX/sX87WVzgcDoWHhysmJsbtMb6cj9SwvsDhcCguLs5tf2hoqGJjY30mt3N91n0th+rqak2YMEFXXXWVunfv7orxXO8hh8NR52tVsw8/88f+xZsCsW/zlkDpU5si1NsB4Pzk5ua6/t2zZ0+lpaWpQ4cOevPNNzVmzBgvRoamGjFihOvfPXr0UM+ePXXJJZdo/fr1ysjI8GJk8Edn6ysiIyO9GBn87bOen5+vHTt2BMT9qvB/9G3wpIC7QtS2bVuFhITUGkmkpKRENpvNS1E1v5iYGF1++eXat2+ft0NpNjWvn9le206dOqlt27YB/dr6i0DoX37ZV9hsNp0+fVplZWVubXw9n4b0BTabrdaN6GfOnFFpaanP5vbrz7ov5VBQUKAVK1boww8/1MUXX+za3pD3kM1mq/O1qtmHnwVC/+JNgdC3eUug9qmNEXAFUXh4uFJSUrR27VrXturqaq1du1bp6elejKx5VVRUaP/+/UpISPB2KM0mOTlZNpvN7bUtLy/X5s2bA/q1/fbbb3X06NGAfm39RSD0L7/sK1JSUhQWFuaWz549e3Tw4EGfzqchfUF6errKyspUXFzsarNu3TpVV1crLS2txWNuiF9/1n0hB8MwVFBQoLfeekvr1q1TcnKy2/6GvIfS09P15Zdfun2Zstvtslqt6tatW4vk4Q8CoX/xpkDo27wlUPvURvH2qA7NYcmSJYbFYjEWLlxo7Nq1yxg3bpwRExPjNsKNv3vggQeM9evXGwcOHDA++eQTIzMz02jbtq1x5MgRb4fWJMePHzc+++wz47PPPjMkGc8++6zx2WefGd98841hGIbxzDPPGDExMcbbb79tfPHFF8aNN95oJCcnGz/99JOXI2+4s+V4/Phx48EHHzSKioqMAwcOGB988IHxH//xH8Zll11mnDp1ytuhw/C//uVcfcU999xjJCUlGevWrTO2bdtmpKenG+np6V6O2jN9QU5OjtGnTx9j8+bNxscff2xcdtllxq233uoTOTT0s+7tHMaPH29ER0cb69evNw4fPuxaTp486WpzrvfQmTNnjO7duxtZWVnG9u3bjVWrVhnt2rUzJk6c2GJ5+At/61+8yV/7Nm8JhD61OQVkQWQYhjFnzhwjKSnJCA8PN/r27Wts2rTJ2yF51C233GIkJCQY4eHhxkUXXWTccsstxr59+7wdVpN9+OGHhqRay6hRowzD+HloyCeeeMKIj483LBaLkZGRYezZs8e7QTfS2XI8efKkkZWVZbRr184ICwszOnToYIwdO5b/GfoYf+pfztVX/PTTT8Yf/vAH48ILLzSioqKMm266yTh8+LAXI/6ZJ/qCo0ePGrfeeqvRqlUrw2q1GnfddZdx/Phxn8ihoZ91b+dQV/ySjAULFrjaNOQ99PXXXxu5ublGZGSk0bZtW+OBBx4wnE5ni+XhT/ypf/Emf+3bvCUQ+tTmFGQYhtG816AAAAAAwDcF3D1EAAAAANBQFEQAAAAATIuCCAAAAIBpURABAAAAMC0KIgAAAACmRUEEAAAAwLQoiAAAAACYFgURAAAAANOiIAIAAABgWhREAAAAAEyLgggAAACAaVEQAQAAADAtCiIAAAAApkVBBAAAAMC0KIgAAAAAmBYFEQAAAADToiACAAAAYFoURAAAAABMi4IIAAAAgGlREAEAAAAwLQoiAAAAAKZFQYQm+/LLL3XzzTerQ4cOioiI0EUXXaRBgwZpzpw5rjYdO3bU9ddfX+uxf//73xUSEqKcnBydOnWqJcMG4MOCgoIatKxfv16S9MMPP+i+++5Tly5dFBkZqbi4OPXt21ePPPKIKioqvJsMAK9YuHChq6/4+OOPa+03DEPt27dXUFCQ23eUN954Q7fffrsuu+wyBQUFacCAAXUev6KiQpMnT1ZOTo5iY2MVFBSkhQsXNlM2aE6h3g4A/u3TTz/Vddddp6SkJI0dO1Y2m02HDh3Spk2b9MILL+jee++t97GLFi3S6NGjlZmZqeXLlysiIqIFIwfgy/7+97+7rb/22muy2+21tnft2lWlpaVKTU1VeXm57r77bnXp0kVHjx7VF198oXnz5mn8+PFq1apVS4YPwIdERERo8eLF6t+/v9v2DRs26Ntvv5XFYnHbPm/ePBUXF+vKK6/U0aNH6z3ujz/+qGnTpikpKUm9evVy/YEG/oeCCE3y1FNPKTo6Wlu3blVMTIzbviNHjtT7uCVLlmjUqFEaOHCg3n77bYohAG5uv/12t/VNmzbJbrfX2i5Jf/rTn3Tw4EF98skn+s1vfuO2r7y8XOHh4c0aKwDfNnjwYC1dulSzZ89WaOj/ffVdvHixUlJS9OOPP7q1//vf/66LLrpIwcHB6t69e73HTUhI0OHDh2Wz2bRt2zZdeeWVzZYDmhc/mUOT7N+/X1dccUWtYkiS4uLi6nzMm2++qdtvv10DBgzQO++8QzEEoEn279+vkJAQ9evXr9Y+q9VKHwOY3K233qqjR4/Kbre7tp0+fVr//Oc/ddttt9Vq3759ewUHn/srssVikc1m82is8A4KIjRJhw4dVFxcrB07djSo/b/+9S+NHDlS11xzjd59911FRkY2c4QAAl2HDh1UVVVV6+d0ACD9fB9zenq6Xn/9dde2999/X8eOHdOIESO8GBl8BQURmuTBBx/UyZMn1bt3b/3mN7/RI488ojVr1sjpdNZq+9lnn2nEiBHq37+/VqxYQTEEwCPuvvtutWvXTqNHj1bXrl01fvx4vf766zp27Ji3QwPgI2677TYtX75cP/30k6Sf72O+9tprlZiY6OXI4AsoiNAkgwYNUlFRkW644QZ9/vnnmjlzprKzs3XRRRfpnXfecWtbWlqqM2fO6OKLL6YYAuAx8fHx+vzzz3XPPffof//3fzV//nzddtttiouL0/Tp02UYhrdDBOBlv/3tb/XTTz9pxYoVOn78uFasWFHnz+VgThREaLIrr7xSy5Yt0//+7/9qy5Ytmjhxoo4fP66bb75Zu3btcrXLyMjQ+PHj9Y9//EMTJkzwXsAAAk5CQoLmzZunw4cPa8+ePZo9e7batWunSZMm6eWXX/Z2eAC8rF27dsrMzNTixYu1bNkyVVVV6eabb/Z2WPARFETwmPDwcF155ZV6+umnNW/ePDmdTi1dutStzV/+8heNGDFCs2fP1pQpU7wTKICAFRQUpMsvv1z33nuvNm7cqODgYC1atMjbYQHwAbfddpvef/99zZ8/X7m5uXUOCAVzoiBCs0hNTZUkHT582G17cHCwXnvtNeXm5mrq1KmaPXu2N8IDYAKdOnXShRdeWKsfAmBON910k4KDg7Vp0yZ+Lgc3FERokg8//LDO3+evXLlSktS5c+da+8LCwvTPf/5TV111lSZMmMDIUACaZPPmzTpx4kSt7Vu2bNHRo0fr7IcAmE+rVq00b948TZkyRUOHDvV2OPAhTMyKJrn33nt18uRJ3XTTTerSpYtOnz6tTz/9VG+88YY6duyou+66q87HRUVF6b333tO1116ru+++W9HR0brhhhtaOHoAgeDvf/+7Fi1apJtuukkpKSkKDw/X7t279corrygiIkKPPfaYt0ME4CNGjRp1zjYbN27Uxo0bJUk//PCDTpw4oSeffFKSdM011+iaa65xtf3LX/6isrIyff/995Kkd999V99++62kn78jRUdHezoFNAMKIjTJrFmztHTpUq1cuVIvvfSSTp8+raSkJP3hD3/Q448/ftbf50ZHR2v16tXq37+/brnlFr3//vsaMGBAi8UOIDD8/ve/V1RUlNauXau3335b5eXlateunbKysjRx4kT16dPH2yEC8CPr1q3T1KlT3bY98cQTkqTJkye7FUSzZs3SN99841pftmyZli1bJkm6/fbbKYj8RJDBeKQAAAAATIp7iAAAAACYFgURAAAAANOiIAIAAABgWhREAAAAAEyLgggAAACAaVEQAQAAADAtv5yHqLq6Wt9//71at26toKAgb4cDBAzDMHT8+HElJiYqONicfy+hfwGaB/0L/QvQXJrcvxh+6NChQ4YkFhaWZloOHTrk7Y+5MWPGDEOScd9997m2/fTTT8Yf/vAHIzY21rjggguM4cOHGw6Hw+1x33zzjTF48GAjMjLSaNeunfHggw8aTqezweelf2Fhad7FF/oXb6F/YWFp3uV8+xe/vELUunVrSdKhQ4dktVrrbed0OrVmzRplZWUpLCyspcLzqEDIQQqMPAIhB+nseZSXl6t9+/auz5i3bN26VX/961/Vs2dPt+3333+/3nvvPS1dulTR0dEqKCjQ8OHD9cknn0iSqqqqNGTIENlsNn366ac6fPiw7rzzToWFhenpp59u0LkDvX8h7pbnr7F7Om5f6V+8KdD7l8Yiz8DjrVyb2r/4ZUFUc5nZarWes0OJioqS1Wr12zdgIOQgBUYegZCD1LA8vPlTjoqKCo0cOVJ/+9vf9OSTT7q2Hzt2TC+//LIWL16sgQMHSpIWLFigrl27atOmTerXr5/WrFmjXbt26YMPPlB8fLx69+6t6dOn65FHHtGUKVMUHh5+zvMHev9C3C3PX2NvrrjN/FOxQO9fGos8A4+3cz3f/sUvCyIAgSs/P19DhgxRZmamW0FUXFwsp9OpzMxM17YuXbooKSlJRUVF6tevn4qKitSjRw/Fx8e72mRnZ2v8+PHauXOn+vTpU+t8lZWVqqysdK2Xl5dL+rlTdzqd9cZZs+9sbXwRcbc8f43d03H7W/4AzIOCCIDPWLJkif77v/9bW7durbXP4XAoPDxcMTExbtvj4+PlcDhcbX5ZDNXsr9lXlxkzZmjq1Km1tq9Zs0ZRUVHnjNlut5+zjS8i7pbnr7F7Ku6TJ0965DgA4GkURAB8wqFDh3TffffJbrcrIiKixc47ceJEFRYWutZrfoeclZV1zp+02O12DRo0yK9+AkHcLc9fY/d03DVXXwHA11AQAfAJxcXFOnLkiP7jP/7Dta2qqkobN27UX/7yF61evVqnT59WWVmZ21WikpIS2Ww2SZLNZtOWLVvcjltSUuLaVxeLxSKLxVJre1hYWIO+BDa0na8h7pbnr7F7Km5/zB2AOZhzIgAAPicjI0Nffvmltm/f7lpSU1M1cuRI17/DwsK0du1a12P27NmjgwcPKj09XZKUnp6uL7/8UkeOHHG1sdvtslqt6tatW4vnBAAAfB9XiAD4hNatW6t79+5u2y644AK1adPGtX3MmDEqLCxUbGysrFar7r33XqWnp6tfv36SpKysLHXr1k133HGHZs6cKYfDoccff1z5+fl1XgUCAACgIALgN5577jkFBwcrLy9PlZWVys7O1osvvujaHxISohUrVmj8+PFKT0/XBRdcoFGjRmnatGlejBoAAPgyCiIAPmv9+vVu6xEREZo7d67mzp1b72M6dOiglStXNnNkAAAgUJiiIOo+ZbUqq5o+EdzXzwzxQDQAAgn9CwD4jo6PvuexY9EvmweDKgAAAAAwLQoiAAAAAKZFQQQAAADAtCiIAAAAAJgWBREAAAhoM2bM0JVXXqnWrVsrLi5Ow4YN0549e9zanDp1Svn5+WrTpo1atWqlvLw8lZSUuLU5ePCghgwZoqioKMXFxemhhx7SmTNnWjIVAM2AgggAAAS0DRs2KD8/X5s2bZLdbpfT6VRWVpZOnDjhanP//ffr3Xff1dKlS7VhwwZ9//33Gj58uGt/VVWVhgwZotOnT+vTTz/Vq6++qoULF2rSpEneSAmAB5li2G0AAGBeq1atcltfuHCh4uLiVFxcrGuuuUbHjh3Tyy+/rMWLF2vgwIGSpAULFqhr167atGmT+vXrpzVr1mjXrl364IMPFB8fr969e2v69Ol65JFHNGXKFIWHh3sjNQAeQEEEAABM5dixY5Kk2NhYSVJxcbGcTqcyMzNdbbp06aKkpCQVFRWpX79+KioqUo8ePRQfH+9qk52drfHjx2vnzp3q06dPrfNUVlaqsrLStV5eXi5Jcjqdcjqd9cZXs+9sbQJBc+RpCTE8dixPxWWW11PyXq5NPR8FEQAAMI3q6mpNmDBBV111lbp37y5JcjgcCg8PV0xMjFvb+Ph4ORwOV5tfFkM1+2v21WXGjBmaOnVqre1r1qxRVFTUOWO12+3nbBMIPJnnzL4eO5RWrlzpuYPJPK+n1PK5njx5skmPpyACAACmkZ+frx07dujjjz9u9nNNnDhRhYWFrvXy8nK1b99eWVlZslqt9T7O6XTKbrdr0KBBCgsLa/Y4vaU58uw+ZbVHjiNJO6Zke+Q4Znk9Je/lWnP19XxREAEAAFMoKCjQihUrtHHjRl188cWu7TabTadPn1ZZWZnbVaKSkhLZbDZXmy1btrgdr2YUupo2v2axWGSxWGptDwsLa9CXxYa283eezLOyKsgjx5Hk8efeLK+n1PK5NvVcjDIHAAACmmEYKigo0FtvvaV169YpOTnZbX9KSorCwsK0du1a17Y9e/bo4MGDSk9PlySlp6fryy+/1JEjR1xt7Ha7rFarunXr1jKJAGgWXCECAAABLT8/X4sXL9bbb7+t1q1bu+75iY6OVmRkpKKjozVmzBgVFhYqNjZWVqtV9957r9LT09WvXz9JUlZWlrp166Y77rhDM2fOlMPh0OOPP678/Pw6rwIB8B8URAAAIKDNmzdPkjRgwAC37QsWLNDo0aMlSc8995yCg4OVl5enyspKZWdn68UXX3S1DQkJ0YoVKzR+/Hilp6frggsu0KhRozRt2rSWSgNAM6EgAgAAAc0wzj0Uc0REhObOnau5c+fW26ZDhw4eH3kMgPdxDxEAAAAA06IgAgAAAGBaFEQAAAAATIuCCAAAAIBpURABAAAAMC0KIgAAAACmRUEEAAAAwLQoiAAAAACYFgURAAAAANOiIAIAAABgWhREAAAAAEyLgggAAACAaTW6INq4caOGDh2qxMREBQUFafny5W77R48eraCgILclJyfHrU1paalGjhwpq9WqmJgYjRkzRhUVFU1KBAAAAAAaq9EF0YkTJ9SrVy/NnTu33jY5OTk6fPiwa3n99dfd9o8cOVI7d+6U3W7XihUrtHHjRo0bN67x0QMAAABAE4Q29gG5ubnKzc09axuLxSKbzVbnvt27d2vVqlXaunWrUlNTJUlz5szR4MGDNWvWLCUmJjY2JAAAAAA4L81yD9H69esVFxenzp07a/z48Tp69KhrX1FRkWJiYlzFkCRlZmYqODhYmzdvbo5wAAAAAKBOjb5CdC45OTkaPny4kpOTtX//fj322GPKzc1VUVGRQkJC5HA4FBcX5x5EaKhiY2PlcDjqPGZlZaUqKytd6+Xl5ZIkp9Mpp9NZbyw1+yzBRlPTcjteS6o5pzfO7UmBkEcg5CCdPQ9/zw0AAKCxPF4QjRgxwvXvHj16qGfPnrrkkku0fv16ZWRknNcxZ8yYoalTp9bavmbNGkVFRZ3z8dNTq8/rvL+2cuVKjxznfNjtdq+d25MCIY9AyEGqO4+TJ096IRIAAADv8XhB9GudOnVS27ZttW/fPmVkZMhms+nIkSNubc6cOaPS0tJ67zuaOHGiCgsLXevl5eVq3769srKyZLVa6z230+mU3W7XE9uCVVkd1ORcdkzJbvIxGqsmh0GDBiksLKzFz+8pgZBHIOQgnT2PmquvAAAAZtHsBdG3336ro0ePKiEhQZKUnp6usrIyFRcXKyUlRZK0bt06VVdXKy0trc5jWCwWWSyWWtvDwsIa9MW0sjpIlVVNL4i8+SW4obn6ukDIIxBykOrOIxDyAgAAaIxGF0QVFRXat2+fa/3AgQPavn27YmNjFRsbq6lTpyovL082m0379+/Xww8/rEsvvVTZ2T9fXenatatycnI0duxYzZ8/X06nUwUFBRoxYgQjzAEAAABoUY0eZW7btm3q06eP+vTpI0kqLCxUnz59NGnSJIWEhOiLL77QDTfcoMsvv1xjxoxRSkqKPvroI7crPIsWLVKXLl2UkZGhwYMHq3///nrppZc8lxUAAAAANECjrxANGDBAhlH/qG2rV68+5zFiY2O1ePHixp4aAAAAADyqWeYhAgAAAAB/0OyDKgAAAAD+puOj73nkOJYQQzP7euRQaCZcIQLgE+bNm6eePXvKarXKarUqPT1d77//vmv/qVOnlJ+frzZt2qhVq1bKy8tTSUmJ2zEOHjyoIUOGKCoqSnFxcXrooYd05syZlk4FAAD4EQoiAD7h4osv1jPPPKPi4mJt27ZNAwcO1I033qidO3dKku6//369++67Wrp0qTZs2KDvv/9ew4cPdz2+qqpKQ4YM0enTp/Xpp5/q1Vdf1cKFCzVp0iRvpQQAAPwAP5kD4BOGDh3qtv7UU09p3rx52rRpky6++GK9/PLLWrx4sQYOHChJWrBggbp27apNmzapX79+WrNmjXbt2qUPPvhA8fHx6t27t6ZPn65HHnlEU6ZMUXh4uDfSAgAAPo6CKIB46reukvT1M0M8diygsaqqqrR06VKdOHFC6enpKi4ultPpVGZmpqtNly5dlJSUpKKiIvXr109FRUXq0aOH4uPjXW2ys7M1fvx47dy50zVVAAAAwC9REAHwGV9++aXS09N16tQptWrVSm+99Za6deum7du3Kzw8XDExMW7t4+Pj5XA4JEkOh8OtGKrZX7OvPpWVlaqsrHStl5eXS5KcTqecTme9j6vZZwmufxqCxjjbuTyp5jwtdT5P8de4Jf+N3dNx+1v+AMyDggiAz+jcubO2b9+uY8eO6Z///KdGjRqlDRs2NOs5Z8yYoalTp9bavmbNGkVFRZ3z8dNTqz0Sx8qVKz1ynIay2+0tej5P8de4Jf+N3VNxnzx50iPHAQBPoyAC4DPCw8N16aWXSpJSUlK0detWvfDCC7rlllt0+vRplZWVuV0lKikpkc1mkyTZbDZt2bLF7Xg1o9DVtKnLxIkTVVhY6FovLy9X+/btlZWVJavVWu/jnE6n7Ha7ntgWrMrqoEbn+ms7pmQ3+RgNURP3oEGDFBYW1iLn9AR/jVvy39g9HXfN1VcA8DUURAB8VnV1tSorK5WSkqKwsDCtXbtWeXl5kqQ9e/bo4MGDSk9PlySlp6frqaee0pEjRxQXFyfp579sW61WdevWrd5zWCwWWSyWWtvDwsIa9CWwsjpIlVVNL4ha+otyQ/PzNf4at+S/sXsqbn/MHYA5UBAB8AkTJ05Ubm6ukpKSdPz4cS1evFjr16/X6tWrFR0drTFjxqiwsFCxsbGyWq269957lZ6ern79+kmSsrKy1K1bN91xxx2aOXOmHA6HHn/8ceXn59dZ8AAAAEgURAB8xJEjR3TnnXfq8OHDio6OVs+ePbV69WoNGjRIkvTcc88pODhYeXl5qqysVHZ2tl588UXX40NCQrRixQqNHz9e6enpuuCCCzRq1ChNmzbNWykBAAA/QEEEwCe8/PLLZ90fERGhuXPnau7cufW26dChQ4sPTgAAAPxbsLcDAAAAAABvoSACAAABbePGjRo6dKgSExMVFBSk5cuXu+0fPXq0goKC3JacnBy3NqWlpRo5cqSsVqtiYmI0ZswYVVRUtGAWAJoLBREAAAhoJ06cUK9evc76k9ucnBwdPnzYtbz++utu+0eOHKmdO3fKbrdrxYoV2rhxo8aNG9fcoQNoAdxDBAAAAlpubq5yc3PP2sZisdQ7Z9nu3bu1atUqbd26VampqZKkOXPmaPDgwZo1a5YSExM9HjOAlsMVIgAAYHrr169XXFycOnfurPHjx+vo0aOufUVFRYqJiXEVQ5KUmZmp4OBgbd682RvhAvAgrhABAABTy8nJ0fDhw5WcnKz9+/frscceU25uroqKihQSEiKHw+Ga8LlGaGioYmNj5XA46j1uZWWlKisrXevl5eWSJKfTKafTWe/javadrU0gaI48LSGGx47lKZbgn2MK9NdT8t57t6nnoyACAACmNmLECNe/e/TooZ49e+qSSy7R+vXrlZGRcd7HnTFjhqZOnVpr+5o1axQVFXXOx9vt9vM+tz/xZJ4z+3rsUB5nltdTavlcT5482aTHUxABAAD8QqdOndS2bVvt27dPGRkZstlsOnLkiFubM2fOqLS0tN77jiRp4sSJKiwsdK2Xl5erffv2ysrKktVqrfdxTqdTdrtdgwYNUlhYWNMT8lHNkWf3Kas9chxPsgQbmp5aHfCvp+S9927N1dfzRUEEAADwC99++62OHj2qhIQESVJ6errKyspUXFyslJQUSdK6detUXV2ttLS0eo9jsVhksVhqbQ8LC2vQl8WGtvN3nsyzsirII8dpDmZ5PaWWz7Wp56IgAgAAAa2iokL79u1zrR84cEDbt29XbGysYmNjNXXqVOXl5clms2n//v16+OGHdemllyo7O1uS1LVrV+Xk5Gjs2LGaP3++nE6nCgoKNGLECEaYAwIAo8wBAICAtm3bNvXp00d9+vSRJBUWFqpPnz6aNGmSQkJC9MUXX+iGG27Q5ZdfrjFjxiglJUUfffSR29WdRYsWqUuXLsrIyNDgwYPVv39/vfTSS95KCYAHcYXIizo++t4521hCDM3s+/NvYn35MjAAAL5qwIABMoz6Rx9bvfrc953ExsZq8eLFngwLgI/gChEAAAAA06IgAgAAAGBaFEQAAAAATIuCCAAAAIBpURABAAAAMC0KIgAAAACmRUEEAAAAwLQoiAAAAACYFgURAAAAANOiIAIAAABgWhREAAAAAEyLgggAAACAaVEQAQAAADAtCiIAAAAApkVBBAAAAMC0KIgAAAAAmBYFEQAAAADToiACAAAAYFqh3g4AAAAA5tV9ympVVgV5OwyYGFeIAAAAAJgWBREAAAAA02p0QbRx40YNHTpUiYmJCgoK0vLly932G4ahSZMmKSEhQZGRkcrMzNTevXvd2pSWlmrkyJGyWq2KiYnRmDFjVFFR0aREAAAAAKCxGl0QnThxQr169dLcuXPr3D9z5kzNnj1b8+fP1+bNm3XBBRcoOztbp06dcrUZOXKkdu7cKbvdrhUrVmjjxo0aN27c+WcBAAAAAOeh0YMq5ObmKjc3t859hmHo+eef1+OPP64bb7xRkvTaa68pPj5ey5cv14gRI7R7926tWrVKW7duVWpqqiRpzpw5Gjx4sGbNmqXExMQmpAMAAAAADefRUeYOHDggh8OhzMxM17bo6GilpaWpqKhII0aMUFFRkWJiYlzFkCRlZmYqODhYmzdv1k033VTruJWVlaqsrHStl5eXS5KcTqecTme98dTsswQbTc7tl8fzFEvIueOqid1TOTSUp3OtOZ6nj9uSAiEH6ex5+HtuAAAAjeXRgsjhcEiS4uPj3bbHx8e79jkcDsXFxbkHERqq2NhYV5tfmzFjhqZOnVpr+5o1axQVFXXOuKanVjco/nNZuXKlR45TY2bfhrf1VA4N5elca9jt9mY5bksKhBykuvM4efKkFyIBAADwHr+Yh2jixIkqLCx0rZeXl6t9+/bKysqS1Wqt93FOp1N2u11PbAtWZXXTx7ffMSW7ycf4pe5TVp+zjSXY0PTUao/l0FCezrXmtRg0aJDCwsI8euyWEgg5SGfPo+bqKwAAgFl4tCCy2WySpJKSEiUkJLi2l5SUqHfv3q42R44ccXvcmTNnVFpa6nr8r1ksFlksllrbw8LCGvTFtLI6yCMTfnn6S3BjYvJUDg3VXF/4G/qa+bJAyEGqO49AyAsAAKAxPDoPUXJysmw2m9auXevaVl5ers2bNys9PV2SlJ6errKyMhUXF7varFu3TtXV1UpLS/NkOAAAAABwVo2+QlRRUaF9+/a51g8cOKDt27crNjZWSUlJmjBhgp588klddtllSk5O1hNPPKHExEQNGzZMktS1a1fl5ORo7Nixmj9/vpxOpwoKCjRixAhGmAMAAADQohp9hWjbtm3q06eP+vTpI0kqLCxUnz59NGnSJEnSww8/rHvvvVfjxo3TlVdeqYqKCq1atUoRERGuYyxatEhdunRRRkaGBg8erP79++ull17yUEoA/NGMGTN05ZVXqnXr1oqLi9OwYcO0Z88etzanTp1Sfn6+2rRpo1atWikvL08lJSVubQ4ePKghQ4YoKipKcXFxeuihh3TmzJmWTAUAAPiRRl8hGjBggAyj/iGgg4KCNG3aNE2bNq3eNrGxsVq8eHFjTw0ggG3YsEH5+fm68sordebMGT322GPKysrSrl27dMEFF0iS7r//fr333ntaunSpoqOjVVBQoOHDh+uTTz6RJFVVVWnIkCGy2Wz69NNPdfjwYd15550KCwvT008/7c30AACAj/KLUeYABL5Vq1a5rS9cuFBxcXEqLi7WNddco2PHjunll1/W4sWLNXDgQEnSggUL1LVrV23atEn9+vXTmjVrtGvXLn3wwQeKj49X7969NX36dD3yyCOaMmWKwsPDvZEaAADwYRREAHzSsWPHJP18RVmSiouL5XQ63SZ+7tKli5KSklRUVKR+/fqpqKhIPXr0cJsLLTs7W+PHj9fOnTtdP/X9pUCd+Plc5/G3SXj9NW7Jf2P3dNz+lj8A86AgAuBzqqurNWHCBF111VXq3r27pJ8ndQ4PD1dMTIxb219P/FzXxNA1++oSqBM/n4u/TjDsr3FL/hu7p+Jm4mcAvoqCCIDPyc/P144dO/Txxx83+7kCdeLn+vjrBMP+Grfkv7F7Om4mfgbgqyiIAPiUgoICrVixQhs3btTFF1/s2m6z2XT69GmVlZW5XSUqKSlxTepss9m0ZcsWt+PVjEJntomfG3I+f/pyXsNf45b8N3ZPxe2PuQMwB49OzAoA58swDBUUFOitt97SunXrlJyc7LY/JSVFYWFhbhM/79mzRwcPHnSb+PnLL7/UkSNHXG3sdrusVqu6devWMokAAAC/QkEEwCfk5+frH//4hxYvXqzWrVvL4XDI4XDop59+kiRFR0drzJgxKiws1Icffqji4mLdddddSk9PV79+/SRJWVlZ6tatm+644w59/vnnWr16tR5//HHl5+fXeRUIgDls3LhRQ4cOVWJiooKCgrR8+XK3/YZhaNKkSUpISFBkZKQyMzO1d+9etzalpaUaOXKkrFarYmJiNGbMGFVUVLRgFgCaCwURAJ8wb948HTt2TAMGDFBCQoJreeONN1xtnnvuOV1//fXKy8vTNddcI5vNpmXLlrn2h4SEaMWKFQoJCVF6erpuv/123XnnnWedFw1A4Dtx4oR69eqluXPn1rl/5syZmj17tubPn6/NmzfrggsuUHZ2tk6dOuVqM3LkSO3cuVN2u931s95x48a1VAoAmhH3EDVCx0ff83YIQMA624TPNSIiIjR37tx6v9RIUocOHVp8xDYAvi03N1e5ubl17jMMQ88//7wef/xx3XjjjZKk1157TfHx8Vq+fLlGjBih3bt3a9WqVdq6datSU1MlSXPmzNHgwYM1a9YsJSYmtlguADyPgggAAJjWgQMH5HA43OY4i46OVlpamoqKijRixAgVFRUpJibGVQxJUmZmpoKDg7V582bddNNNdR67qfOcBfrcTZ6ez81X1eQX6K+n5L33blPPR0EEAABMq2aOsrrmMPvlHGdxcXFu+0NDQxUbG1vvHGdS0+c589e5qxrLU/O5+TqzvJ5Sy+fa1HnOKIgAAACaQVPnOfO3uasay9PzufkqS7Ch6anVAf96St577zZ1njMKIgAAYFo1c5SVlJQoISHBtb2kpES9e/d2tfnlcP6SdObMGZWWltY7x5nU9HnO/HXuqsby1Hxuvs4sr6fU8rk29VyMMgcAAEwrOTlZNpvNbY6z8vJybd682W2Os7KyMhUXF7varFu3TtXV1UpLS2vxmAF4FleIAABAQKuoqNC+fftc6wcOHND27dsVGxurpKQkTZgwQU8++aQuu+wyJScn64knnlBiYqKGDRsmSeratatycnI0duxYzZ8/X06nUwUFBRoxYgQjzAEBgIIIAAAEtG3btum6665zrdfc1zNq1CgtXLhQDz/8sE6cOKFx48aprKxM/fv316pVqxQREeF6zKJFi1RQUKCMjAwFBwcrLy9Ps2fPbvFcAHgeBREAAAhoAwYMOOtcZ0FBQZo2bdpZJ3GOjY3V4sWLmyM8AF7GPUQAAAAATIuCCAAAAIBpURABAAAAMC0KIgAAAACmRUEEAAAAwLQoiAAAAACYFgURAAAAANOiIAIAAABgWhREAAAAAEyLgggAAACAaVEQAQAAADAtCiIAAAAApkVBBAAAAMC0KIgAAAAAmBYFEQAAAADToiACAAAAYFoURAAAAABMi4IIAAAAgGlREAEAAAAwLQoiAAAAAKZFQQQAAADAtCiIAAAAAJgWBREAAAAA06IgAgAAAGBaod4OAL6p46PvefR4e6dnefR4AAAAgCdwhQgAAACAaVEQAQAAADAtCiIAAAAApkVBBAAAAMC0PF4QTZkyRUFBQW5Lly5dXPtPnTql/Px8tWnTRq1atVJeXp5KSko8HQYAAAAAnFOzjDJ3xRVX6IMPPvi/k4T+32nuv/9+vffee1q6dKmio6NVUFCg4cOH65NPPmmOUADAL3h6ZMevnxni0eMBAJqm+5TVqqwK8tjx6Oc9p1kKotDQUNlstlrbjx07ppdfflmLFy/WwIEDJUkLFixQ165dtWnTJvXr1685wgEAAACAOjVLQbR3714lJiYqIiJC6enpmjFjhpKSklRcXCyn06nMzExX2y5duigpKUlFRUX1FkSVlZWqrKx0rZeXl0uSnE6nnE5nvXHU7LMEG55IyytqYvfnHKT/ey3O9nr5ukDIQTp7Hv6eGwAAQGN5vCBKS0vTwoUL1blzZx0+fFhTp07V1VdfrR07dsjhcCg8PFwxMTFuj4mPj5fD4aj3mDNmzNDUqVNrbV+zZo2ioqLOGdP01OpG5+Fr/D0Hu93u9l9/Fgg5SHXncfLkSS9E8rONGzfqT3/6k4qLi3X48GG99dZbGjZsmGu/YRiaPHmy/va3v6msrExXXXWV5s2bp8suu8zVprS0VPfee6/effddBQcHKy8vTy+88IJatWrlhYwAAIA/8HhBlJub6/p3z549lZaWpg4dOujNN99UZGTkeR1z4sSJKiwsdK2Xl5erffv2ysrKktVqrfdxTqdTdrtdT2wLVmW1536z2ZIswYamp1b7dQ6S9Nl/DZTdbtegQYMUFhbm7XDOS837yZ9zkM6eR83VV284ceKEevXqpbvvvlvDhw+vtX/mzJmaPXu2Xn31VSUnJ+uJJ55Qdna2du3apYiICEnSyJEjdfjwYdntdjmdTt11110aN26cFi9e3NLpAAAAP9EsP5n7pZiYGF1++eXat2+fBg0apNOnT6usrMztKlFJSUmd9xzVsFgsslgstbaHhYU16ItpZXWQR29i8wZ/z6HmdWroa+bLAiEHqe48vJlXbm6u2x9UfskwDD3//PN6/PHHdeONN0qSXnvtNcXHx2v58uUaMWKEdu/erVWrVmnr1q1KTU2VJM2ZM0eDBw/WrFmzlJiY2GK5AAAA/9Hs8xBVVFRo//79SkhIUEpKisLCwrR27VrX/j179ujgwYNKT09v7lAA+KkDBw7I4XC43X8YHR2ttLQ0FRUVSZKKiooUExPjKoYkKTMzU8HBwdq8eXOLxwwAAPyDx68QPfjggxo6dKg6dOig77//XpMnT1ZISIhuvfVWRUdHa8yYMSosLFRsbKysVqvuvfdepaenM8IcgHrV3GMYHx/vtv2X9x86HA7FxcW57Q8NDVVsbOxZ71EM1EFb6ovdXwcH8de4Jf+N3dNx+3r+U6ZMqXW/cufOnfXVV19J+nkexQceeEBLlixRZWWlsrOz9eKLL9bqlwD4H48XRN9++61uvfVWHT16VO3atVP//v21adMmtWvXTpL03HPPuW52/mWHAgDeEKiDtqxcufKs+/11cBB/jVvy39g9Fbc3B21pKOZRBMzJ4wXRkiVLzro/IiJCc+fO1dy5cz19agABquYew5KSEiUkJLi2l5SUqHfv3q42R44ccXvcmTNnVFpaetZ7FAN10JYdU7Lr3O6vg4P4a9yS/8bu6bi9OWhLQzGPImBOzT6oAgA0VXJysmw2m9auXesqgMrLy7V582aNHz9ekpSenq6ysjIVFxcrJSVFkrRu3TpVV1crLS2t3mMH6qAt54rdXwcH8de4Jf+N3VNx+0Punp5HEYB/oCAC4BMqKiq0b98+1/qBAwe0fft2xcbGKikpSRMmTNCTTz6pyy67zDXsdmJiomuuoq5duyonJ0djx47V/Pnz5XQ6VVBQoBEjRjDCHIBzao55FJt6j6Kv33fVVL5+L6an1OTn6Tx98f3hrfduU89HQQTAJ2zbtk3XXXeda73mZ2yjRo3SwoUL9fDDD+vEiRMaN26cysrK1L9/f61atco1B5EkLVq0SAUFBcrIyHDdqzh79uwWzwWA/2mOeRSbeo+iv9531li+ei+mp3k6z3PdK+pNLf3ebeo9ihREAHzCgAEDZBj1//UsKChI06ZN07Rp0+ptExsbyySsADzCE/MoNvUeRX+776yxfP1eTE+xBBuanlrt8Tzru1fUm7z13m3qPYoURAAAAL9SM4/iHXfc4TaPYl5enqSGzaPY1HsU/fW+s8by1XsxPc3Tefrye6Ol37tNPRcFEQAAMD3mUQTMi4IIAACYHvMoAuZFQQQAAEyPeRQB8wr2dgAAAAAA4C0URAAAAABMi4IIAAAAgGlREAEAAAAwLQoiAAAAAKZFQQQAAADAtCiIAAAAAJgWBREAAAAA06IgAgAAAGBaFEQAAAAATIuCCAAAAIBpURABAAAAMC0KIgAAAACmRUEEAAAAwLRCvR0AAMDzOj76Xp3bLSGGZvaVuk9ZrcqqoAYd6+tnhngyNAAAfApXiAAAAACYFgURAAAAANOiIAIAAABgWhREAAAAAEyLgggAAACAaVEQAQAAADAtCiIAAAAApkVBBAAAAMC0KIgAAAAAmBYFEQAAAADToiACAAAAYFoURAAAAABMi4IIAAAAgGlREAEAAAAwLQoiAAAAAKYV6u0AAAC+reOj73n0eF8/M8SjxwMAoCkoiAAAANBgnvojiSXE0My+HjkU0CQURGgR3aes1sy+P/+3siqoScfir8sAAADwFAoiAAAAH+SJPyJK/CExUHny58xmf48wqAIAAAAA06IgAgAAAGBaFEQAAAAATIuCCAAAAIBpebUgmjt3rjp27KiIiAilpaVpy5Yt3gwHQICgbwHQXOhfgMDjtVHm3njjDRUWFmr+/PlKS0vT888/r+zsbO3Zs0dxcXHeCguAn6Nv8X3nMzJSzXwlnhp1qz5mH2kJZ0f/AgQmrxVEzz77rMaOHau77rpLkjR//ny99957euWVV/Too496Kyz4AU8OMynxBSjQ0LcAaC70LwhUZp9s1ysF0enTp1VcXKyJEye6tgUHByszM1NFRUW12ldWVqqystK1fuzYMUlSaWmpnE5nvedxOp06efKkQp3Bqqpuvr8oNqfQakMnT1b7dQ6Sb+dx9OjRBrWreT8dPXpUYWFhzRzVz9JmrPXo8TZPzDhrHsePH5ckGYbh0fO2lMb2LZL5+hdf/iyeTUvFfemDb3r0eOf6zDVGc/QHZ+PpPo/+xXv9S0P/P9dQoWdOeOY4ftofNZZZ8pT+L9fe/7VMlR7K9Vx9leSB/sXwgu+++86QZHz66adu2x966CGjb9++tdpPnjzZkMTCwtJCy6FDh1qqO/CoxvYthkH/wsLS0gv9CwsLS3Mt59u/eO0nc40xceJEFRYWutarq6tVWlqqNm3aKCio/uqzvLxc7du316FDh2S1WlsiVI8LhBykwMgjEHKQzp6HYRg6fvy4EhMTvRRdyzNb/0LcLc9fY/d03PQvgd+/NBZ5Bh5v5drU/sUrBVHbtm0VEhKikpISt+0lJSWy2Wy12lssFlksFrdtMTExDT6f1Wr1+zdgIOQgBUYegZCDVH8e0dHRXojGMxrbt0jm7V+Iu+X5a+yejJv+xRz9S2ORZ+DxRq5N6V+8Mux2eHi4UlJStHbt//0eurq6WmvXrlV6ero3QgIQAOhbADQX+hcgcHntJ3OFhYUaNWqUUlNT1bdvXz3//PM6ceKEa+QWADgf9C0Amgv9CxCYvFYQ3XLLLfrhhx80adIkORwO9e7dW6tWrVJ8fLzHzmGxWDR58uRal6v9SSDkIAVGHoGQgxQ4edSnJfoWyX+fR+Juef4au7/G3ZzoXzyLPAOPv+YaZBh+Ov4lAAAAADSRV+4hAgAAAABfQEEEAAAAwLQoiAAAAACYFgURAAAAANMK2IJo7ty56tixoyIiIpSWlqYtW7Z4O6SzmjFjhq688kq1bt1acXFxGjZsmPbs2ePWZsCAAQoKCnJb7rnnHi9FXNuUKVNqxdelSxfX/lOnTik/P19t2rRRq1atlJeXV2uCO1/QsWPHWnkEBQUpPz9fkm++Dhs3btTQoUOVmJiooKAgLV++3G2/YRiaNGmSEhISFBkZqczMTO3du9etTWlpqUaOHCmr1aqYmBiNGTNGFRUVLZiF//C1/qUh/UdDPn8HDx7UkCFDFBUVpbi4OD300EM6c+ZMi+XxzDPPKCgoSBMmTPD5uL/77jvdfvvtatOmjSIjI9WjRw9t27bNtd9XP3NVVVV64oknlJycrMjISF1yySWaPn26fjm+kq/Gbha+1r80laf6J39zvv2Zv/BEH+hTjAC0ZMkSIzw83HjllVeMnTt3GmPHjjViYmKMkpISb4dWr+zsbGPBggXGjh07jO3btxuDBw82kpKSjIqKCleba6+91hg7dqxx+PBh13Ls2DEvRu1u8uTJxhVXXOEW3w8//ODaf8899xjt27c31q5da2zbts3o16+f8Zvf/MaLEdftyJEjbjnY7XZDkvHhhx8ahuGbr8PKlSuN//qv/zKWLVtmSDLeeustt/3PPPOMER0dbSxfvtz4/PPPjRtuuMFITk42fvrpJ1ebnJwco1evXsamTZuMjz76yLj00kuNW2+9tYUz8X2+2L80pP841+fvzJkzRvfu3Y3MzEzjs88+M1auXGm0bdvWmDhxYovksGXLFqNjx45Gz549jfvuu8+n4y4tLTU6dOhgjB492ti8ebPxP//zP8bq1auNffv2udr46mfuqaeeMtq0aWOsWLHCOHDggLF06VKjVatWxgsvvODzsZuBL/YvTeWJ/snfnG9/5i881Qf6koAsiPr27Wvk5+e71quqqozExERjxowZXoyqcY4cOWJIMjZs2ODadu2117p9sHzN5MmTjV69etW5r6yszAgLCzOWLl3q2rZ7925DklFUVNRCEZ6f++67z7jkkkuM6upqwzB8/3X4dUFUXV1t2Gw2409/+pNrW1lZmWGxWIzXX3/dMAzD2LVrlyHJ2Lp1q6vN+++/bwQFBRnfffddi8XuD/yhf/l1/9GQz9/KlSuN4OBgw+FwuNrMmzfPsFqtRmVlZbPGe/z4ceOyyy4z7Ha72+fLV+N+5JFHjP79+9e735c/c0OGDDHuvvtut23Dhw83Ro4c6fOxm4E/9C9NdT79kz9pSn/mLzzRB/qagPvJ3OnTp1VcXKzMzEzXtuDgYGVmZqqoqMiLkTXOsWPHJEmxsbFu2xctWqS2bduqe/fumjhxok6ePOmN8Oq1d+9eJSYmqlOnTho5cqQOHjwoSSouLpbT6XR7Xbp06aKkpCSffl1Onz6tf/zjH7r77rsVFBTk2u7rr8MvHThwQA6Hw+25j46OVlpamuu5LyoqUkxMjFJTU11tMjMzFRwcrM2bN7d4zL7KX/qXX/cfDfn8FRUVqUePHm4TTGZnZ6u8vFw7d+5s1njz8/M1ZMgQt/h8Oe533nlHqamp+s///E/FxcWpT58++tvf/uba78ufud/85jdau3at/v3vf0uSPv/8c3388cfKzc31+dgDnb/0L011Pv2TP2lKf+YvPNEH+ppQbwfgaT/++KOqqqpqzRodHx+vr776yktRNU51dbUmTJigq666St27d3dtv+2229ShQwclJibqiy++0COPPKI9e/Zo2bJlXoz2/6SlpWnhwoXq3LmzDh8+rKlTp+rqq6/Wjh075HA4FB4erpiYGLfHxMfHy+FweCfgBli+fLnKyso0evRo1zZffx1+reb5reszUbPP4XAoLi7ObX9oaKhiY2N9+vVpaf7Qv9TVfzTk8+dwOOrMq2Zfc1myZIn++7//W1u3bq21z1fj/p//+R/NmzdPhYWFeuyxx7R161b9v//3/xQeHq5Ro0b59Gfu0UcfVXl5ubp06aKQkBBVVVXpqaee0siRI11x+Wrsgc4f+pemOt/+yV80tT/zF57oA31NwBVEgSA/P187duzQxx9/7LZ93Lhxrn/36NFDCQkJysjI0P79+3XJJZe0dJi11PyFUZJ69uyptLQ0dejQQW+++aYiIyO9GNn5e/nll5Wbm6vExETXNl9/HWBu9fUfvujQoUO67777ZLfbFRER4e1wGqy6ulqpqal6+umnJUl9+vTRjh07NH/+fI0aNcrL0Z3dm2++qUWLFmnx4sW64oortH37dk2YMEGJiYk+Hzv8nz/1T43lr/3Z+fDnPrA+AfeTubZt2yokJKTWqB0lJSWy2WxeiqrhCgoKtGLFCn344Ye6+OKLz9o2LS1NkrRv376WCK3RYmJidPnll2vfvn2y2Ww6ffq0ysrK3Nr48uvyzTff6IMPPtDvfve7s7bz9deh5vk922fCZrPpyJEjbvvPnDmj0tJSn319vMHX+5f6+o+GfP5sNludedXsaw7FxcU6cuSI/uM//kOhoaEKDQ3Vhg0bNHv2bIWGhio+Pt4n405ISFC3bt3ctnXt2tX1E2Ff/sw99NBDevTRRzVixAj16NFDd9xxh+6//37NmDHD52MPdL7evzRVU/onf+CJ/sxfeKIP9DUBVxCFh4crJSVFa9eudW2rrq7W2rVrlZ6e7sXIzs4wDBUUFOitt97SunXrlJycfM7HbN++XdLPb0xfVFFRof379yshIUEpKSkKCwtze1327NmjgwcP+uzrsmDBAsXFxWnIkCFnbefrr0NycrJsNpvbc19eXq7Nmze7nvv09HSVlZWpuLjY1WbdunWqrq52FXzw3f7lXP1HQz5/6enp+vLLL92+6Nrtdlmt1lr/4/OUjIwMffnll9q+fbtrSU1N1ciRI13/9sW4r7rqqlrDBv/73/9Whw4dJPn2Z+7kyZMKDnb/X39ISIiqq6t9PvZA56v9S1N5on/yB57oz/yFJ/pAn+PlQR2axZIlSwyLxWIsXLjQ2LVrlzFu3DgjJibGbRQiXzN+/HgjOjraWL9+vdtwzidPnjQMwzD27dtnTJs2zdi2bZtx4MAB4+233zY6depkXHPNNV6O/P888MADxvr1640DBw4Yn3zyiZGZmWm0bdvWOHLkiGEYPw83mZSUZKxbt87Ytm2bkZ6ebqSnp3s56rpVVVUZSUlJxiOPPOK23Vdfh+PHjxufffaZ8dlnnxmSjGeffdb47LPPjG+++cYwjJ+Hv4yJiTHefvtt44svvjBuvPHGOofR7dOnj7F582bj448/Ni677DKG0a2DL/Yv5+o/DOPcn7+a4auzsrKM7du3G6tWrTLatWvXYsNu1/j1KI6+GPeWLVuM0NBQ46mnnjL27t1rLFq0yIiKijL+8Y9/uNr46mdu1KhRxkUXXeQadnvZsmVG27ZtjYcfftjnYzcDX+xfmsoT/ZO/amx/5i881Qf6koAsiAzDMObMmWMkJSUZ4eHhRt++fY1NmzZ5O6SzklTnsmDBAsMwDOPgwYPGNddcY8TGxhoWi8W49NJLjYceesjr89/80i233GIkJCQY4eHhxkUXXWTccsstbmPS//TTT8Yf/vAH48ILLzSioqKMm266yTh8+LAXI67f6tWrDUnGnj173Lb76uvw4Ycf1vn+GTVqlGEYPw+B+cQTTxjx8fGGxWIxMjIyauV29OhR49ZbbzVatWplWK1W46677jKOHz/uhWx8n6/1L+fqPwyjYZ+/r7/+2sjNzTUiIyONtm3bGg888IDhdDpbNJdff4Hw1bjfffddo3v37obFYjG6dOlivPTSS277ffUzV15ebtx3331GUlKSERERYXTq1Mn4r//6L7chyn01drPwtf6lqTzVP/mj8+nP/IUn+kBfEmQYv5ieGgAAAABMJODuIQIAAACAhqIgAgAAAGBaFEQAAAAATIuCCAAAAIBpURABAAAAMC0KIgAAAACmRUEEAAAAwLQoiAAAAACYFgURAAAAANOiIAIAAABgWhREAAAAAEyLgggAAACAaVEQAQAAADAtCiIAAAAApkVBBAAAAMC0KIgAAAAAmBYFEQAAAADToiACAAAAYFoURAAAAABMi4IIAAAAgGlREAEAAAAwLQoiNMjChQsVFBTktsTFxem6667T+++/79b2l21CQ0MVGxurlJQU3Xfffdq1a1etYx86dEhTp05V3759deGFF6pt27YaMGCAPvjgg5ZKD4APefHFFxUUFKS0tDRvhwKgmdV8v9i2bZu3Q4GJhXo7APiXadOmKTk5WYZhqKSkRAsXLtTgwYP17rvv6vrrr3e1GzRokO68804ZhqFjx47p888/16uvvqoXX3xRf/zjH1VYWOhq+/bbb+uPf/yjhg0bplGjRunMmTN67bXXNGjQIL3yyiu66667vJEqAC9ZtGiROnbsqC1btmjfvn269NJLvR0SACCAURChUXJzc5WamupaHzNmjOLj4/X666+7FUSXX365br/9drfHPvPMMxo6dKgeeOABdenSRYMHD5YkXXfddTp48KDatm3ranvPPfeod+/emjRpEgURYCIHDhzQp59+qmXLlun3v/+9Fi1apMmTJ3s7LAAmYxiGTp06pcjISG+HghbAT+bQJDExMYqMjFRo6Llr6zZt2mjJkiUKDQ3VU0895dp+xRVXuBVDkmSxWDR48GB9++23On78uMfjBuCbFi1apAsvvFBDhgzRzTffrEWLFtVqc/ToUd1xxx2yWq2KiYnRqFGj9PnnnysoKEgLFy50a/vVV1/p5ptvVmxsrCIiIpSamqp33nmnhbIB0FijR49Wq1at9N1332nYsGFq1aqV2rVrpwcffFBVVVVubZcsWaKUlBS1bt1aVqtVPXr00AsvvODaP2XKFAUFBdU6R83P9L7++mvXto4dO+r666/X6tWrlZqaqsjISP31r3+VJC1YsEADBw5UXFycLBaLunXrpnnz5tU6bs0xPv74Y/Xt21cRERHq1KmTXnvttVpty8rKdP/996tjx46yWCy6+OKLdeedd+rHH390tamsrNTkyZN16aWXymKxqH379nr44YdVWVnZ6OcVZ0dBhEY5duyYfvzxR/3www/auXOnxo8fr4qKilpXg+qTlJSka6+9Vps2bVJ5eflZ2zocDkVFRSkqKsoToQPwA4sWLdLw4cMVHh6uW2+9VXv37tXWrVtd+6urqzV06FC9/vrrGjVqlJ566ikdPnxYo0aNqnWsnTt3ql+/ftq9e7ceffRR/fnPf9YFF1ygYcOG6a233mrJtAA0QlVVlbKzs9WmTRvNmjVL1157rf785z/rpZdecrWx2+269dZbdeGFF+qPf/yjnnnmGQ0YMECffPLJeZ93z549uvXWWzVo0CC98MIL6t27tyRp3rx56tChgx577DH9+c9/Vvv27fWHP/xBc+fOrXWMffv26eabb9agQYP05z//WRdeeKFGjx6tnTt3utpUVFTo6quv1pw5c5SVlaUXXnhB99xzj7766it9++23kn7u62644QbNmjVLQ4cO1Zw5czRs2DA999xzuuWWW847R9TDABpgwYIFhqRai8ViMRYuXOjWVpKRn59f77Huu+8+Q5Lx+eef19tm7969RkREhHHHHXd4LAcAvm3btm2GJMNutxuGYRjV1dXGxRdfbNx3332uNv/6178MScbzzz/v2lZVVWUMHDjQkGQsWLDAtT0jI8Po0aOHcerUKde26upq4ze/+Y1x2WWXNXs+AM6t5vvF1q1bDcMwjFGjRhmSjGnTprm169Onj5GSkuJav++++wyr1WqcOXOm3mNPnjzZqOurbs05Dxw44NrWoUMHQ5KxatWqWu1PnjxZa1t2drbRqVMnt201x9i4caNr25EjRwyLxWI88MADrm2TJk0yJBnLli2rddzq6mrDMAzj73//uxEcHGx89NFHbvvnz59vSDI++eSTerLG+eAKERpl7ty5stvtstvt+sc//qHrrrtOv/vd77Rs2bIGH6NVq1aSVO9P4U6ePKn//M//VGRkpJ555hmPxA3A9y1atEjx8fG67rrrJP08YuUtt9yiJUuWuH4qs2rVKoWFhWns2LGuxwUHBys/P9/tWKWlpVq3bp1++9vf6vjx4/rxxx/1448/6ujRo8rOztbevXv13XfftVxyABrlnnvucVu/+uqr9T//8z+u9ZiYGJ04cUJ2u91j50xOTlZ2dnat7b+8j6jmlzLXXnut/ud//kfHjh1za9utWzddffXVrvV27dqpc+fObrH/61//Uq9evXTTTTfVOlfNT/yWLl2qrl27qkuXLq7+68cff9TAgQMlSR9++GHTkoUbBlVAo/Tt29dtUIVbb71Vffr0UUFBga6//nqFh4ef8xgVFRWSpNatW9faV1VVpREjRmjXrl16//33lZiY6LngAfisqqoqLVmyRNddd50OHDjg2p6WlqY///nPWrt2rbKysvTNN98oISGh1k9pfz0S3b59+2QYhp544gk98cQTdZ7zyJEjuuiiizyfDIAmiYiIULt27dy2XXjhhfrf//1f1/of/vAHvfnmm8rNzdVFF12krKws/fa3v1VOTs55nzc5ObnO7Z988okmT56soqIinTx50m3fsWPHFB0d7VpPSkqq9fhfx75//37l5eWdNZa9e/dq9+7dtZ6HGkeOHDnr49E4FERokuDgYF133XV64YUXtHfvXl1xxRXnfMyOHTsUEhJSZ8czduxYrVixQosWLXL9FQRA4Fu3bp0OHz6sJUuWaMmSJbX2L1q0SFlZWQ0+XnV1tSTpwQcfrPMvvlLtIgqAbwgJCTlnm7i4OG3fvl2rV6/W+++/r/fff18LFizQnXfeqVdffVWS6hxQQVKtwRlq1DWi3P79+5WRkaEuXbro2WefVfv27RUeHq6VK1fqueeec/U154rdMIxz5vRL1dXV6tGjh5599tk697dv375Rx8PZURChyc6cOSPp/678nM3Bgwe1YcMGpaen17pC9NBDD2nBggV6/vnndeuttzZLrAB806JFixQXF1fnTcrLli3TW2+9pfnz56tDhw768MMPdfLkSberRPv27XN7TKdOnSRJYWFhyszMbN7gAXhFeHi4hg4dqqFDh6q6ulp/+MMf9Ne//lVPPPGELr30Ul144YWSfh7RLSYmxvW4b775psHnePfdd1VZWal33nnH7epPU36ydskll2jHjh3nbPP5558rIyOj3sIOnsM9RGgSp9OpNWvWKDw8XF27dj1r29LSUt16662qqqrSf/3Xf7nt+9Of/qRZs2bpscce03333decIQPwMT/99JOWLVum66+/XjfffHOtpaCgQMePH9c777yj7OxsOZ1O/e1vf3M9vrq6ulYhFRcXpwEDBuivf/2rDh8+XOucP/zwQ7PnBaD5HD161G09ODhYPXv2lCTXsNSXXHKJJGnjxo2udidOnHBdQWqImis+v7zCc+zYMS1YsOD8ApeUl5enzz//vM7RLmvO89vf/lbfffedW19X46efftKJEyfO+/yojStEaJT3339fX331laSff7+6ePFi7d27V48++qisVqur3b///W/94x//kGEYKi8v1+eff66lS5eqoqJCzz77rNtvfN966y09/PDDuuyyy9S1a1f94x//cDvnoEGDFB8f3zIJAmhx77zzjo4fP64bbrihzv39+vVTu3bttGjRIr311lvq27evHnjgAe3bt09dunTRO++8o9LSUknuP5GZO3eu+vfvrx49emjs2LHq1KmTSkpKVFRUpG+//Vaff/55i+QHwPN+97vfqbS0VAMHDtTFF1+sb775RnPmzFHv3r1df6DNyspSUlKSxowZo4ceekghISF65ZVX1K5dOx08eLBB58nKynJdifr973+viooK/e1vf1NcXFydf2xpiIceekj//Oc/9Z//+Z+6++67lZKSotLSUr3zzjuaP3++evXqpTvuuENvvvmm7rnnHn344Ye66qqrVFVVpa+++kpvvvmma74keIhXx7iD36hr2O2IiAijd+/exrx581zDRBqG4dYmODjYiImJMfr06WPcd999xs6dO2sdu2ZYzPqWDz/8sAUzBdDShg4dakRERBgnTpyot83o0aONsLAw48cffzR++OEH47bbbjNat25tREdHG6NHjzY++eQTQ5KxZMkSt8ft37/fuPPOOw2bzWaEhYUZF110kXH99dcb//znP5s7LQANUNew2xdccEGtdr8eQvuf//ynkZWVZcTFxRnh4eFGUlKS8fvf/944fPiw2+OKi4uNtLQ0V5tnn3223mG3hwwZUmeM77zzjtGzZ08jIiLC6Nixo/HHP/7ReOWVVxp8jGuvvda49tpr3bYdPXrUKCgoMC666CIjPDzcuPjii41Ro0YZP/74o6vN6dOnjT/+8Y/GFVdcYVgsFuPCCy80UlJSjKlTpxrHjh2r9zlF4wUZRiPv8gIAwMcsX75cN910kz7++GNdddVV3g4HAOBHKIgAAH7lp59+chsNqqqqSllZWdq2bZscDkedI0UBAFAf7iECAPiVe++9Vz/99JPS09NVWVmpZcuW6dNPP9XTTz9NMQQAaDSuEAEA/MrixYv15z//Wfv27dOpU6d06aWXavz48SooKPB2aAAAP0RBBAAAAMC0mIcIAAAAgGlREAEAAAAwLb8cVKG6ulrff/+9Wrdu7TYJH4CmMQxDx48fV2JiooKDzfn3EvoXoHnQv9C/AM2lyf1LYyYtevrpp43U1FSjVatWRrt27Ywbb7zR+Oqrr9zaXHvttbUm1vz973/v1uabb74xBg8ebERGRhrt2rUzHnzwQcPpdDY4jkOHDp11Ik8WFpamLYcOHWpM1xBQ6F9YWJp3oX/x/mvAwhKoy/n2L426QrRhwwbl5+fryiuv1JkzZ/TYY48pKytLu3bt0gUXXOBqN3bsWE2bNs21HhUV5fp3VVWVhgwZIpvNpk8//VSHDx/WnXfeqbCwMD399NMNiqN169aSpEOHDikyMlJr1qxRVlaWwsLCGpMO6uB0Onk+PcQfn8vy8nK1b9/e9Rkzo1/2L1ar1bXdH1/P5sDzwHMgnd9zQP9Sf//ya4HwHvP3HPw9fslcOTS1f2lUQbRq1Sq39YULFyouLk7FxcW65pprXNujoqJks9nqPMaaNWu0a9cuffDBB4qPj1fv3r01ffp0PfLII5oyZYrCw8PPGUfNZWar1arIyEhFRUXJarX67YvtS5xOJ8+nh/jzc2nmn3L8sn/5dUHkr6+nJ/E88BxITXsO6F9q9y+/FgjvMX/Pwd/jl8yZw/n2L036Ee+xY8ckSbGxsW7bFy1apLZt26p79+6aOHGiTp486dpXVFSkHj16KD4+3rUtOztb5eXl2rlzZ1PCAQAAAIBGOe9BFaqrqzVhwgRdddVV6t69u2v7bbfdpg4dOigxMVFffPGFHnnkEe3Zs0fLli2TJDkcDrdiSJJr3eFw1HmuyspKVVZWutbLy8sl/Vw1hoaGuv6Npqt5Hnk+m84fn0t/ihUAAMATzrsgys/P144dO/Txxx+7bR83bpzr3z169FBCQoIyMjK0f/9+XXLJJed1rhkzZmjq1Km1tq9Zs8Z1f5Ldbj+vY6NuPJ+e40/P5S+v5gIAAJjBeRVEBQUFWrFihTZu3KiLL774rG3T0tIkSfv27dMll1wim82mLVu2uLUpKSmRpHrvO5o4caIKCwtd6zU3TmVlZSkyMlJ2u12DBg3y299H+hKn08nz6SH++FzWXH0FAAAwi0YVRIZh6N5779Vbb72l9evXKzk5+ZyP2b59uyQpISFBkpSenq6nnnpKR44cUVxcnKSf/4JutVrVrVu3Oo9hsVhksVhqbQ8LC3N90fzlv9F0PJ+e40/Ppb/ECQAA4CmNKojy8/O1ePFivf3222rdurXrnp/o6GhFRkZq//79Wrx4sQYPHqw2bdroiy++0P33369rrrlGPXv2lCRlZWWpW7duuuOOOzRz5kw5HA49/vjjys/Pr7PoAQAAAIDm0qhR5ubNm6djx45pwIABSkhIcC1vvPGGJCk8PFwffPCBsrKy1KVLFz3wwAPKy8vTu+++6zpGSEiIVqxYoZCQEKWnp+v222/XnXfe6TZvEQAAAAC0hEb/ZO5s2rdvrw0bNpzzOB06dNDKlSsbc2oAAAAA8LjzHmXOX3R89D2PHevrZ4Z47FgA/B/9CwAAtXnq/4+WEEMz+3rkUGfVpIlZAQAA/M0zzzyjoKAgTZgwwbXt1KlTys/PV5s2bdSqVSvl5eW5RsGtcfDgQQ0ZMuT/a+/+o6Oq7/yPv/JjMkmASQw0CVkJYrX8EBAMAqO2tRASIGux5GylTWmwrGyzgRWyRWGLyA/dsNSvVt2I1YOBHqWs9AgWZIExFFg1gETT8qtULd3UlQlbOCGEyGRI7vcPT+4yJiEkuZPJ5D4f53BO5nM/c+f9+Vxyc99z731fxcfHKzk5WYsXL9aVK1e6OXoAViMhAgAAtvH+++/rF7/4hVnsqdmiRYu0fft2bdmyRfv379dnn32mmTNnmssbGxuVk5OjhoYGvffee9q4caM2bNig5cuXd/cQAFiMhAgAANhCXV2d8vLy9PLLL+uGG24w2y9cuKD169fr6aef1qRJk5SRkaHS0lK99957OnjwoKQvHgZ/4sQJvfrqqxozZoymTZum1atXq6SkRA0NDaEaEgAL9Pp7iAAAAKQvHh+Sk5OjzMxMPfHEE2Z7RUWF/H6/MjMzzbZhw4YpPT1d5eXlmjhxosrLyzVq1CilpKSYfbKzs1VQUKDjx49r7NixLT7P5/PJ5/OZr5sffu33++X3+9uMs3nZtfr0dOE+hnCPXwrtGJxR1y7Edt3rifxiPe2NoatjJCECAAC93ubNm/XBBx/o/fffb7HM6/UqJiZGiYmJAe0pKSnmMxe9Xm9AMtS8vHlZa4qLi7Vy5coW7Xv27FF8fHy7MXs8nnb79HThPoZwj18KzRisLoTQ3hjq6+u7tH4SIgAA0Kv95S9/0cMPPyyPx6PY2Nhu+9ylS5eqqKjIfF1bW6tBgwYpKytLLperzff5/X55PB5NmTJFDoejO0K1XLiPIdzjl0I7hpErdluyHmekodXjmtodQ/PZ184iIQIAAL1aRUWFzp49qzvuuMNsa2xs1IEDB/Tv//7v2r17txoaGlRTUxNwlqi6ulqpqamSpNTUVB0+fDhgvc1V6Jr7fJnT6ZTT6WzR7nA4rusA9Xr79WThPoZwj18KzRh8jRGWrq+9MXR1fBRVAAAAvdrkyZN19OhRVVZWmv/GjRunvLw882eHw6GysjLzPadOnVJVVZXcbrckye126+jRozp79qzZx+PxyOVyacSIEd0+JgDW4QwRAADo1fr166eRI0cGtPXp00f9+/c32+fOnauioiIlJSXJ5XJpwYIFcrvdmjhxoiQpKytLI0aM0OzZs7V27Vp5vV4tW7ZMhYWFrZ4FAhA+SIgAAIDtPfPMM4qMjFRubq58Pp+ys7P1wgsvmMujoqK0Y8cOFRQUyO12q0+fPsrPz9eqVatCGDUAK5AQAQAA29m3b1/A69jYWJWUlKikpKTN9wwePFg7d+4McmQAuhv3EAEAAACwLRIiAAAAALZFQgQAAADAtkiIAAAAANgWCREAAAAA2yIhAgAAAGBbJEQAAAAAbIuECAAAAIBtkRABAAAAsC0SIgAAAAC2RUIEAAAAwLZIiAAAAADYFgkRgB6huLhYd955p/r166fk5GTdf//9OnXqVECfy5cvq7CwUP3791ffvn2Vm5ur6urqgD5VVVXKyclRfHy8kpOTtXjxYl25cqU7hwIAAMIICRGAHmH//v0qLCzUwYMH5fF45Pf7lZWVpUuXLpl9Fi1apO3bt2vLli3av3+/PvvsM82cOdNc3tjYqJycHDU0NOi9997Txo0btWHDBi1fvjwUQwIAAGEgOtQBAIAk7dq1K+D1hg0blJycrIqKCn3jG9/QhQsXtH79em3atEmTJk2SJJWWlmr48OE6ePCgJk6cqD179ujEiRN6++23lZKSojFjxmj16tV69NFHtWLFCsXExIRiaAAAoAcjIQLQI124cEGSlJSUJEmqqKiQ3+9XZmam2WfYsGFKT09XeXm5Jk6cqPLyco0aNUopKSlmn+zsbBUUFOj48eMaO3Zsi8/x+Xzy+Xzm69raWkmS3++X3+8325t/vrrNGWVYMdQW6+3JWpsHu2EOOjcHdp4vAD0bCRGAHqepqUkLFy7U3XffrZEjR0qSvF6vYmJilJiYGNA3JSVFXq/X7HN1MtS8vHlZa4qLi7Vy5coW7Xv27FF8fHyLdo/HY/68dvz1j6k9O3futG5l3eDqebAr5qBjc1BfXx/ESACg80iIAPQ4hYWFOnbsmN55552gf9bSpUtVVFRkvq6trdWgQYOUlZUll8tltvv9fnk8Hk2ZMkUOh0OSNHLFbsviOLYi27J1BVNr82A3zEHn5qD57CsA9DQkRAB6lPnz52vHjh06cOCAbrzxRrM9NTVVDQ0NqqmpCThLVF1drdTUVLPP4cOHA9bXXIWuuc+XOZ1OOZ3OFu0Oh6PVA72r232NER0b3DWE24F1W/NjJ8xBx+bA7nMFoOfqUJU5yuICCBbDMDR//nxt3bpVe/fu1ZAhQwKWZ2RkyOFwqKyszGw7deqUqqqq5Ha7JUlut1tHjx7V2bNnzT4ej0cul0sjRozonoEAAICw0qGEiLK4AIKlsLBQr776qjZt2qR+/frJ6/XK6/Xq888/lyQlJCRo7ty5Kioq0m9/+1tVVFTowQcflNvt1sSJEyVJWVlZGjFihGbPnq3f/e532r17t5YtW6bCwsJWzwIBAAB06JI5yuICCJZ169ZJku69996A9tLSUs2ZM0eS9MwzzygyMlK5ubny+XzKzs7WCy+8YPaNiorSjh07VFBQILfbrT59+ig/P1+rVq3qrmEAAIAw06V7iLqrLC6A3s8w2i9hHRsbq5KSEpWUlLTZZ/DgwWFXsQ0AAIROpxOi7iyLe63nhERHR5s/t8aOzwnpCp6vYZ1wnMtwihUAAMAKnU6IurMs7vU8J6StZyHY+TkhXcHzNawTTnPJc0IAAIDddCoh6u6yuNd6TkhcXNw1n4Vgx+eEdAXP17BOOM4lzwkBAAB206GEyDAMLViwQFu3btW+ffuuWRY3NzdXUutlcZ988kmdPXtWycnJktovi3s9zwlp61kIdn5OSFfwfA3rhNNchkucAAAAVulQQlRYWKhNmzbpzTffNMviSl+Uw42Liwsoi5uUlCSXy6UFCxa0WRZ37dq18nq9lMUFAAAAEBIdSogoiwsAAACgN+nwJXPtoSwuAAAAgHARGeoAAAAAACBUSIgAAAAA2BYJEQAAAADbIiECAAAAYFskRAAAAABsi4QIAAAAgG2REAEAAACwLRIiAAAAALZFQgQAAHq1devWafTo0XK5XHK5XHK73frP//xPc/nly5dVWFio/v37q2/fvsrNzVV1dXXAOqqqqpSTk6P4+HglJydr8eLFunLlSncPBUAQkBABAIBe7cYbb9SaNWtUUVGhI0eOaNKkSZoxY4aOHz8uSVq0aJG2b9+uLVu2aP/+/frss880c+ZM8/2NjY3KyclRQ0OD3nvvPW3cuFEbNmzQ8uXLQzUkABaKDnUAAAAAwXTfffcFvH7yySe1bt06HTx4UDfeeKPWr1+vTZs2adKkSZKk0tJSDR8+XAcPHtTEiRO1Z88enThxQm+//bZSUlI0ZswYrV69Wo8++qhWrFihmJiYUAwLgEU4QwQAAGyjsbFRmzdv1qVLl+R2u1VRUSG/36/MzEyzz7Bhw5Senq7y8nJJUnl5uUaNGqWUlBSzT3Z2tmpra82zTADCF2eIAABAr3f06FG53W5dvnxZffv21datWzVixAhVVlYqJiZGiYmJAf1TUlLk9XolSV6vNyAZal7evKwtPp9PPp/PfF1bWytJ8vv98vv9bb6vedm1+vR04T6GcI9fCu0YnFGGNeuJ/GI97Y2hq2MkIQIAAL3e0KFDVVlZqQsXLujXv/618vPztX///qB+ZnFxsVauXNmifc+ePYqPj2/3/R6PJxhhdatwH0O4xy+FZgxrx1u7vvbGUF9f36X1kxABAIBeLyYmRrfccoskKSMjQ++//76effZZPfDAA2poaFBNTU3AWaLq6mqlpqZKklJTU3X48OGA9TVXoWvu05qlS5eqqKjIfF1bW6tBgwYpKytLLperzff5/X55PB5NmTJFDoejw2PtCcJ9DOEevxTaMYxcsduS9TgjDa0e19TuGJrPvnYWCREAALCdpqYm+Xw+ZWRkyOFwqKysTLm5uZKkU6dOqaqqSm63W5Lkdrv15JNP6uzZs0pOTpb0xTfWLpdLI0aMaPMznE6nnE5ni3aHw3FdB6jX268nC/cxhHv8UmjG4GuMsHR97Y2hq+MjIQIAAL3a0qVLNW3aNKWnp+vixYvatGmT9u3bp927dyshIUFz585VUVGRkpKS5HK5tGDBArndbk2cOFGSlJWVpREjRmj27Nlau3atvF6vli1bpsLCwlYTHgDhhYQIAAD0amfPntUPf/hDnTlzRgkJCRo9erR2796tKVOmSJKeeeYZRUZGKjc3Vz6fT9nZ2XrhhRfM90dFRWnHjh0qKCiQ2+1Wnz59lJ+fr1WrVoVqSAAsREIEAAB6tfXr119zeWxsrEpKSlRSUtJmn8GDB2vnzp1WhwagB+A5RAAAAABsi4QIAAAAgG2REAEAAACwLRIiAAAAALZFQgQAAADAtkiIAAAAANgWCREAAAAA2yIhAtAjHDhwQPfdd5/S0tIUERGhbdu2BSyfM2eOIiIiAv5NnTo1oM/58+eVl5cnl8ulxMREzZ07V3V1dd04CgAAEG5IiAD0CJcuXdLtt99+zQcjTp06VWfOnDH//epXvwpYnpeXp+PHj8vj8WjHjh06cOCA5s2bF+zQAQBAGIsOdQDh5KYlb1m6vj+vybF0fUA4mzZtmqZNm3bNPk6nU6mpqa0uO3nypHbt2qX3339f48aNkyQ9//zzmj59up566imlpaVZHjMAAAh/JEQAwsa+ffuUnJysG264QZMmTdITTzyh/v37S5LKy8uVmJhoJkOSlJmZqcjISB06dEjf+c53Wl2nz+eTz+czX9fW1kqS/H6//H6/2d7889VtzijDsrFdvd6erLV5sBvmoHNzYOf5AtCzkRABCAtTp07VzJkzNWTIEH3yySf6l3/5F02bNk3l5eWKioqS1+tVcnJywHuio6OVlJQkr9fb5nqLi4u1cuXKFu179uxRfHx8i3aPx2P+vHZ8Fwb0JTt37rRuZd3g6nmwK+agY3NQX18fxEgAoPM6nBAdOHBAP/vZz1RRUaEzZ85o69atuv/++83lc+bM0caNGwPek52drV27dpmvz58/rwULFmj79u2KjIxUbm6unn32WfXt27fzIwHQq82aNcv8edSoURo9erS++tWvat++fZo8eXKn17t06VIVFRWZr2trazVo0CBlZWXJ5XKZ7X6/Xx6PR1OmTJHD4ZAkjVyxu9Of+2XHVmRbtq5gam0e7IY56NwcNJ99BYCepsMJUfONzz/60Y80c+bMVvtMnTpVpaWl5mun0xmwPC8vT2fOnJHH45Hf79eDDz6oefPmadOmTR0NB4BN3XzzzRowYIA+/vhjTZ48WampqTp79mxAnytXruj8+fNt3nckfbF/+vI+SpIcDkerB3pXt/saI7o4isD1hpO25sdOmIOOzYHd5wpAz9XhhIgbnwH0BJ9++qnOnTungQMHSpLcbrdqampUUVGhjIwMSdLevXvV1NSkCRMmhDJUAADQgwWl7Hbzjc9Dhw5VQUGBzp07Zy5r78ZnAPZUV1enyspKVVZWSpJOnz6tyspKVVVVqa6uTosXL9bBgwf15z//WWVlZZoxY4ZuueUWZWd/canZ8OHDNXXqVD300EM6fPiw3n33Xc2fP1+zZs3iixYAANAmy4sqBOPG52tVgYqOjjZ/bo2VVaCs1hMr7lA9yTrhOJehjPXIkSP61re+Zb5uvq8nPz9f69at0+9//3tt3LhRNTU1SktLU1ZWllavXh1wudtrr72m+fPna/Lkyeb9ic8991y3jwUAAIQPyxOiYNz4fD1VoNqqdGNlFSir9eSqUlRPsk44zWUoq0Dde++9Moy2v8DYvbv9AgZJSUnciwgAADok6GW3rbjx+VpVoOLi4q5Z6cbKKlBW64lVpaieZJ1wnEuqQAEAALsJekJkxY3P11MFqq1KN1ZWgbJaTz5IpnqSdcJpLsMlTgAAAKt0OCGqq6vTxx9/bL5uvvE5KSlJSUlJWrlypXJzc5WamqpPPvlEjzzySJs3Pr/44ovy+/3c+AwAAAAgJDpcZe7IkSMaO3asxo4dK+mLG5/Hjh2r5cuXKyoqSr///e/17W9/W1/72tc0d+5cZWRk6L/+679a3Pg8bNgwTZ48WdOnT9c999yjl156ybpRAQAAAMB16PAZIm58BgAAANBbBOU5RAAAAAAQDkiIAAAAANgWCREAAAAA2yIhAgAAAGBbJEQAAAAAbIuECAAAAIBtkRABAAAAsC0SIgAAAAC2RUIEAAAAwLZIiAAAAADYFgkRAAAAANsiIQIAAABgWyREAAAAAGwrOtQBAACkm5a8Zen6/rwmx9L1AQDQW3GGCAAAAIBtkRABAAAAsC0SIgAA0KsVFxfrzjvvVL9+/ZScnKz7779fp06dCuhz+fJlFRYWqn///urbt69yc3NVXV0d0Keqqko5OTmKj49XcnKyFi9erCtXrnTnUAAEAQkRAADo1fbv36/CwkIdPHhQHo9Hfr9fWVlZunTpktln0aJF2r59u7Zs2aL9+/frs88+08yZM83ljY2NysnJUUNDg9577z1t3LhRGzZs0PLly0MxJAAWoqgCAADo1Xbt2hXwesOGDUpOTlZFRYW+8Y1v6MKFC1q/fr02bdqkSZMmSZJKS0s1fPhwHTx4UBMnTtSePXt04sQJvf3220pJSdGYMWO0evVqPfroo1qxYoViYmJCMTQAFiAhAgAAtnLhwgVJUlJSkiSpoqJCfr9fmZmZZp9hw4YpPT1d5eXlmjhxosrLyzVq1CilpKSYfbKzs1VQUKDjx49r7NixLT7H5/PJ5/OZr2trayVJfr9ffr+/zfial12rT08X7mMI9/il0I7BGWVYs57IL9bT3hi6OkYSIgAAYBtNTU1auHCh7r77bo0cOVKS5PV6FRMTo8TExIC+KSkp8nq9Zp+rk6Hm5c3LWlNcXKyVK1e2aN+zZ4/i4+PbjdXj8bTbp6cL9zGEe/xSaMawdry162tvDPX19V1aPwkRAACwjcLCQh07dkzvvPNO0D9r6dKlKioqMl/X1tZq0KBBysrKksvlavN9fr9fHo9HU6ZMkcPhCHqcwRDuYwj3+KXQjmHkit2WrMcZaWj1uKZ2x9B89rWzSIgAAIAtzJ8/Xzt27NCBAwd04403mu2pqalqaGhQTU1NwFmi6upqpaammn0OHz4csL7mKnTNfb7M6XTK6XS2aHc4HNd1gHq9/XqycB9DuMcvhWYMvsYIS9fX3hi6Oj6qzAEAgF7NMAzNnz9fW7du1d69ezVkyJCA5RkZGXI4HCorKzPbTp06paqqKrndbkmS2+3W0aNHdfbsWbOPx+ORy+XSiBEjumcgAIKCM0QAAKBXKyws1KZNm/Tmm2+qX79+5j0/CQkJiouLU0JCgubOnauioiIlJSXJ5XJpwYIFcrvdmjhxoiQpKytLI0aM0OzZs7V27Vp5vV4tW7ZMhYWFrZ4FAhA+SIhC6KYlb1m6vj+vybF0fQAA9Abr1q2TJN17770B7aWlpZozZ44k6ZlnnlFkZKRyc3Pl8/mUnZ2tF154wewbFRWlHTt2qKCgQG63W3369FF+fr5WrVrVXcMAECQkRAAAoFczjPZLAMfGxqqkpEQlJSVt9hk8eLB27txpZWjXNHLFbkvuxeALU+DauIcIQI9w4MAB3XfffUpLS1NERIS2bdsWsNwwDC1fvlwDBw5UXFycMjMz9dFHHwX0OX/+vPLy8uRyuZSYmKi5c+eqrq6uG0cBAADCDQkRgB7h0qVLuv3229v8dnbt2rV67rnn9OKLL+rQoUPq06ePsrOzdfnyZbNPXl6ejh8/Lo/HY1aSmjdvXncNAQAAhCEumQPQI0ybNk3Tpk1rdZlhGPr5z3+uZcuWacaMGZKkX/7yl0pJSdG2bds0a9YsnTx5Urt27dL777+vcePGSZKef/55TZ8+XU899ZTS0tK6bSwAACB8cIYIQI93+vRpeb1eZWZmmm0JCQmaMGGCysvLJUnl5eVKTEw0kyFJyszMVGRkpA4dOtTtMQMAgPDQ4TNEBw4c0M9+9jNVVFTozJkz2rp1q+6//35zuWEYevzxx/Xyyy+rpqZGd999t9atW6dbb73V7HP+/HktWLBA27dvNyu6PPvss+rbt68lgwLQuzSXyE1JSQloT0lJMZd5vV4lJycHLI+OjlZSUpLZpzU+n08+n8983fy0a7/fL7/fb7Y3/3x1mzOq/Ru1Q+XqOIOx3mCtPxwwB52bAzvPF4CercMJUfN1/j/60Y80c+bMFsubr/PfuHGjhgwZoscee0zZ2dk6ceKEYmNjJX1xnf+ZM2fk8Xjk9/v14IMPat68edq0aVPXRwQAHVBcXKyVK1e2aN+zZ4/i4+NbtHs8HvPnteODGlqXBLsS1tXzYFfMQcfmoL6+PoiRAEDndTgh4jp/AN0tNTVVklRdXa2BAwea7dXV1RozZozZ5+onyEvSlStXdP78efP9rVm6dKmKiorM17W1tRo0aJCysrLkcrnMdr/fL4/HoylTpsjhcEj6oiRuT3VsRXZQ1tvaPNgNc9C5OWg++woAPY2lRRXau85/1qxZ7V7n/53vfKfFeq91SUt0dLT5c2t68iUtVrPicgQuBbFOOM5lT411yJAhSk1NVVlZmZkA1dbW6tChQyooKJAkud1u1dTUqKKiQhkZGZKkvXv3qqmpSRMmTGhz3U6ns9WnzDscjlYP9K5ut+L5IMES7AP1tubHTpiDjs2B3ecKQM9laUIUrOv8r+eSlrZO2/fkS1qsZuUlMlwKYp1wmstQXtJSV1enjz/+2Hx9+vRpVVZWKikpSenp6Vq4cKGeeOIJ3XrrrebluGlpaeY9jMOHD9fUqVP10EMP6cUXX5Tf79f8+fM1a9YszjwDAIA2hUXZ7Wtd0hIXF3fN0/Y9+ZIWq1lxiQyXglgnHOcylJe0HDlyRN/61rfM182/8/n5+dqwYYMeeeQRXbp0SfPmzVNNTY3uuece7dq1y7w3UZJee+01zZ8/X5MnTzYLtjz33HPdPhYAABA+LE2IgnWd//Vc0tLWafuefEmL1aw86OZSEOuE01yGMs57771XhtH2Ja4RERFatWqVVq1a1WafpKQkirMAAIAOsfQ5RFdf59+s+Tp/t9stKfA6/2bXc50/AAAAAFitw2eIuM4fAAAAQG/R4YSI6/wBAAAA9BYdToi4zh8AAABAb2HpPUQAAAAAEE5IiAAAAADYFgkRAAAAANsiIQIAAABgWyREAAAAAGyLhAgAAACAbZEQAQAAALAtEiIAAAAAtkVCBAAAAMC2okMdAADAejctecuydf15TY5l6wIAoKfhDBEAAAAA2yIhAgAAAGBbJEQAAAAAbIuECAAAAIBtkRABAAAAsC0SIgAAAAC2RUIEAAAAwLZIiAAAAADYFgkRAAAAANsiIQIAAABgW9GhDgAA0LPdtOQt82dnlKG146WRK3bL1xjRqfX9eU2OVaEBANBlnCECAAAAYFskRAAAAABsi4QIAAD0agcOHNB9992ntLQ0RUREaNu2bQHLDcPQ8uXLNXDgQMXFxSkzM1MfffRRQJ/z588rLy9PLpdLiYmJmjt3rurq6rpxFACChYQIAAD0apcuXdLtt9+ukpKSVpevXbtWzz33nF588UUdOnRIffr0UXZ2ti5fvmz2ycvL0/Hjx+XxeLRjxw4dOHBA8+bN664hAAgiiioAAIBebdq0aZo2bVqrywzD0M9//nMtW7ZMM2bMkCT98pe/VEpKirZt26ZZs2bp5MmT2rVrl95//32NGzdOkvT8889r+vTpeuqpp5SWltZtYwFgPc4QAQAA2zp9+rS8Xq8yMzPNtoSEBE2YMEHl5eWSpPLyciUmJprJkCRlZmYqMjJShw4d6vaYAViLM0QAAMC2vF6vJCklJSWgPSUlxVzm9XqVnJwcsDw6OlpJSUlmn9b4fD75fD7zdW1trSTJ7/fL7/e3+b7mZc5IowMjadu1PitYmj8zFJ9thXCPXwrtGJxR1vzfbf4daG8MXR0jCREAAEAQFBcXa+XKlS3a9+zZo/j4+Hbfv3pckyVx7Ny505L1dIbH4wnZZ1sh3OOXQjOGteOtXV97Y6ivr+/S+kmIAISNFStWtDi4GDp0qP7whz9Iki5fvqx//ud/1ubNm+Xz+ZSdna0XXnihxTe/ANAsNTVVklRdXa2BAwea7dXV1RozZozZ5+zZswHvu3Llis6fP2++vzVLly5VUVGR+bq2tlaDBg1SVlaWXC5Xm+/z+/3yeDx67EikfE2dewDy1Y6tyO7yOjqqeQxTpkyRw+Ho9s/vqnCPXwrtGEau2G3JepyRhlaPa2p3DM1nXzuLhAhAWLntttv09ttvm6+jo/9vN7Zo0SK99dZb2rJlixISEjR//nzNnDlT7777bihCBRAGhgwZotTUVJWVlZkJUG1trQ4dOqSCggJJktvtVk1NjSoqKpSRkSFJ2rt3r5qamjRhwoQ21+10OuV0Olu0OxyO6zpA9TVFyNfY9YQolAf01zvWnirc45dCMwYr/t9erb0xdHV8lhdVWLFihSIiIgL+DRs2zFx++fJlFRYWqn///urbt69yc3NVXV1tdRgAeqno6Gilpqaa/wYMGCBJunDhgtavX6+nn35akyZNUkZGhkpLS/Xee+/p4MGDIY4aQCjV1dWpsrJSlZWVkr4opFBZWamqqipFRERo4cKFeuKJJ/Sb3/xGR48e1Q9/+EOlpaXp/vvvlyQNHz5cU6dO1UMPPaTDhw/r3Xff1fz58zVr1iwqzAG9QFCqzN122206c+aM+e+dd94xly1atEjbt2/Xli1btH//fn322WeaOXNmMMIA0At99NFHSktL080336y8vDxVVVVJkioqKuT3+wMqRQ0bNkzp6elmpSgA9nTkyBGNHTtWY8eOlSQVFRVp7NixWr58uSTpkUce0YIFCzRv3jzdeeedqqur065duxQbG2uu47XXXtOwYcM0efJkTZ8+Xffcc49eeumlkIwHgLWCcslc8ze4X9b8De6mTZs0adIkSVJpaamGDx+ugwcPauLEicEIB0AvMWHCBG3YsEFDhw7VmTNntHLlSn3961/XsWPH5PV6FRMTo8TExID3XF0pqjXXWwWqtWo9VlXRCSfNFX+6Uv0qnKs2Sb2j+lRXdWYOQjlf9957rwyj7f+zERERWrVqlVatWtVmn6SkJG3atCkY4QEIsaAkRM3f4MbGxsrtdqu4uFjp6entfoPbVkJ0rQOW5vsH2trR2umAxYo/Nvyht044zmVPj/XqByuOHj1aEyZM0ODBg/X6668rLi6uU+vsaBWoqyvdWF1FJ5x0pfpVKCteWak3VJ/qqo7MQVerQAFAsFieEAXjG9zrOWBpa6dspwMWKw8y+ENvnXCay3A7YElMTNTXvvY1ffzxx5oyZYoaGhpUU1MTsI+prq62pApUa9V6rKqiE06aK/50pfpVKCpeWak3VJ/qqs7MQVerQAFAsFieEAXjG9xrHbDExcVdc6dspwMWKw4y+ENvnXCcy3A7YKmrq9Mnn3yi2bNnKyMjQw6HQ2VlZcrNzZUknTp1SlVVVXK73W2uo6NVoK5ut7qKTjjpSvWrcPl9aE9vqD7VVR2ZA7vPFYCeK+hlt634Bvd6Dlja2inb6YDFyj82/KG3TjjNZU+P8yc/+Ynuu+8+DR48WJ999pkef/xxRUVF6Xvf+54SEhI0d+5cFRUVKSkpSS6XSwsWLJDb7eb+RAAA0KagVJm7WvM3uAMHDgz4BrfZ9XyDCwCS9Omnn+p73/uehg4dqu9+97vq37+/Dh48qK985SuSpGeeeUZ/+7d/q9zcXH3jG99Qamqq3njjjRBHDQAAejLLzxDxDW7o3LTkrS6vwxll2Oq+K4SXzZs3X3N5bGysSkpKVFJS0k0RAQCAcGd5QtT8De65c+f0la98Rffcc0+Lb3AjIyOVm5srn8+n7OxsvfDCC1aHAQAAAADtsjwh4htcAAAAAOEi6PcQAQAAAEBPRUIEAAAAwLZIiAAAAADYFgkRAAAAANsiIQIAAABgWyREAAAAAGzL8rLbAABcixUPkb7an9fkWLo+AIC9cIYIAAAAgG2REAEAAACwLRIiAAAAALZFQgQAAADAtkiIAAAAANgWCREAAAAA26LsNgAgrFldxrs9zihDa8dLI1fslq8x4pp9KQkOAD0fZ4gAAAAA2BYJEQAAAADbIiECAAAAYFskRAAAAABsi4QIAAAAgG1RZQ6tup7qSR1BpSUAAAD0RJwhAgAAAGBbJEQAAAAAbIuECAAAAIBtkRABAAAAsC2KKgAAECQ3LXnLsnVRnAYAgoMzRAAAAABsi4QIAAAAgG1xyRy6BZeNAAAAoCfiDBEAAAAA2yIhAgAAAGBbJEQAAAAAbCukCVFJSYluuukmxcbGasKECTp8+HAowwHQS7BvARAs7F+A3idkCdF//Md/qKioSI8//rg++OAD3X777crOztbZs2dDFRKAXoB9C4BgYf8C9E4hqzL39NNP66GHHtKDDz4oSXrxxRf11ltv6ZVXXtGSJUtCFRZsqCdXwLMyNskeFfrYtwAIFvYvQO8UkoSooaFBFRUVWrp0qdkWGRmpzMxMlZeXt+jv8/nk8/nM1xcuXJAknT9/XrGxsaqvr9e5c+fkcDhavDf6yqUgjKD3im4yVF/fpGh/pBqbIkIdTqtu+cnrlq7Pyl+Cq2NzRhpaNrZJY376hnydnEurf0HPnTt3zeUXL16UJBmGYfEnd4+O7luka+9f/H6/2e73+1vsa+y4fwmHfUSwhWoOrN73dcWX92+Hlk5u9z3sX9rev3xZ8/7Gqv9j7e37g6G1fWY4Cff4pdCOwaq/j8372/bG0NX9S0gSor/+9a9qbGxUSkpKQHtKSor+8Ic/tOhfXFyslStXtmgfMmRI0GK0s++HOoBepKfN5YD/d339Ll68qISEhOAGEwQd3bdI7F86o6f9vw4F5iBwDq533yKxf5G6f//Ske0D9DQd2d92dv8SFg9mXbp0qYqKiszXTU1NOn/+vPr376+LFy9q0KBB+stf/iKXyxXCKHuH2tpa5tMi4TiXhmHo4sWLSktLC3Uo3eZa+5eIiP/7ZjYct2cwMA/MgdS5OWD/0vb+5ct6w/+xcB9DuMcv2WsMXd2/hCQhGjBggKKiolRdXR3QXl1drdTU1Bb9nU6nnE5nQFtiYqIkmTsUl8sVthu7J2I+rRNucxmO39w26+i+Rbr2/qU14bY9g4V5YA6kjs8B+5dr71++rDf8Hwv3MYR7/JJ9xtCV/UtIqszFxMQoIyNDZWVlZltTU5PKysrkdrtDERKAXoB9C4BgYf8C9F4hu2SuqKhI+fn5GjdunMaPH6+f//znunTpklm5BQA6g30LgGBh/wL0TiFLiB544AH97//+r5YvXy6v16sxY8Zo165dLW5WbI/T6dTjjz/e4pQ0Oof5tA5zGRpW7Vu+jO35BeaBOZDsOwfB2r98WW+Y33AfQ7jHLzGGjogwwrX+JQAAAAB0UUjuIQIAAACAnoCECAAAAIBtkRABAAAAsC0SIgAAAAC2FfYJUUlJiW666SbFxsZqwoQJOnz4cKhDCksHDhzQfffdp7S0NEVERGjbtm2hDilsFRcX684771S/fv2UnJys+++/X6dOnQp1WLhO17P9Ll++rMLCQvXv3199+/ZVbm5ui4c19iZr1qxRRESEFi5caLbZYQ7+53/+Rz/4wQ/Uv39/xcXFadSoUTpy5Ii53DAMLV++XAMHDlRcXJwyMzP10UcfhTBiazU2Nuqxxx7TkCFDFBcXp69+9atavXq1rq7F1NvnwCodPVbZsmWLhg0bptjYWI0aNUo7d+4MWB6Kee/IGF5++WV9/etf1w033KAbbrhBmZmZLfrPmTNHERERAf+mTp3aY8awYcOGFvHFxsYG9Onp2+Hee+9tMYaIiAjl5OSYfbpzO3TmWHPfvn2644475HQ6dcstt2jDhg0t+liSCxhhbPPmzUZMTIzxyiuvGMePHzceeughIzEx0aiurg51aGFn586dxk9/+lPjjTfeMCQZW7duDXVIYSs7O9soLS01jh07ZlRWVhrTp0830tPTjbq6ulCHhutwPdvvxz/+sTFo0CCjrKzMOHLkiDFx4kTjrrvuCmHUwXP48GHjpptuMkaPHm08/PDDZntvn4Pz588bgwcPNubMmWMcOnTI+NOf/mTs3r3b+Pjjj80+a9asMRISEoxt27YZv/vd74xvf/vbxpAhQ4zPP/88hJFb58knnzT69+9v7Nixwzh9+rSxZcsWo2/fvsazzz5r9untc2CFjh6rvPvuu0ZUVJSxdu1a48SJE8ayZcsMh8NhHD161OzT3fPe0TF8//vfN0pKSowPP/zQOHnypDFnzhwjISHB+PTTT80++fn5xtSpU40zZ86Y/86fPx+U+DszhtLSUsPlcgXE5/V6A/r09O1w7ty5gPiPHTtmREVFGaWlpWaf7twOHT3W/NOf/mTEx8cbRUVFxokTJ4znn3/eiIqKMnbt2mX2sSoXCOuEaPz48UZhYaH5urGx0UhLSzOKi4tDGFX4IyGy1tmzZw1Jxv79+0MdCjrhy9uvpqbGcDgcxpYtW8w+J0+eNCQZ5eXloQozKC5evGjceuuthsfjMb75zW+aCZEd5uDRRx817rnnnjaXNzU1GampqcbPfvYzs62mpsZwOp3Gr371q+4IMehycnKMH/3oRwFtM2fONPLy8gzDsMccWKGjxyrf/e53jZycnIC2CRMmGP/wD/9gGEZo5r2rx1tXrlwx+vXrZ2zcuNFsy8/PN2bMmGF1qG3q6BhKS0uNhISENtcXjtvhmWeeMfr16xfwBV93b4dm13Os+cgjjxi33XZbQNsDDzxgZGdnm6+tygXC9pK5hoYGVVRUKDMz02yLjIxUZmamysvLQxgZEOjChQuSpKSkpBBHgs748varqKiQ3+8P2PcMGzZM6enpvW7fU1hYqJycnICxSvaYg9/85jcaN26c/u7v/k7JyckaO3asXn75ZXP56dOn5fV6A+YgISFBEyZM6DVzcNddd6msrEx//OMfJUm/+93v9M4772jatGmS7DEHXdWZY5Xy8vIWv3PZ2dlm/+6edyuOt+rr6+X3+1v8Hdy3b5+Sk5M1dOhQFRQU6Ny5c5bG3qyzY6irq9PgwYM1aNAgzZgxQ8ePHzeXheN2WL9+vWbNmqU+ffoEtHfXduio9n4XrMwFwjYh+utf/6rGxsYWT4dOSUmR1+sNUVRAoKamJi1cuFB33323Ro4cGepw0EGtbT+v16uYmBglJiYG9O1t+57Nmzfrgw8+UHFxcYtldpiDP/3pT1q3bp1uvfVW7d69WwUFBfqnf/onbdy4UZLMcfbmv0FLlizRrFmzNGzYMDkcDo0dO1YLFy5UXl6eJHvMQVd15ljF6/Ves393z7sVx1uPPvqo0tLSAg5cp06dql/+8pcqKyvTv/3bv2n//v2aNm2aGhsbLY1f6twYhg4dqldeeUVvvvmmXn31VTU1Nemuu+7Sp59+Kin8tsPhw4d17Ngx/f3f/31Ae3duh45q63ehtrZWn3/+uaW5QHSXowXQpsLCQh07dkzvvPNOqENBJ9h1+/3lL3/Rww8/LI/H0+ImYrtoamrSuHHj9K//+q+SpLFjx+rYsWN68cUXlZ+fH+Lousfrr7+u1157TZs2bdJtt92myspKLVy4UGlpabaZA3TdmjVrtHnzZu3bty9gfzJr1izz51GjRmn06NH66le/qn379mny5MmhCDWA2+2W2+02X991110aPny4fvGLX2j16tUhjKxz1q9fr1GjRmn8+PEB7T19O3SXsD1DNGDAAEVFRbWoalRdXa3U1NQQRQX8n/nz52vHjh367W9/qxtvvDHU4aCD2tp+qampamhoUE1NTUD/3rTvqaio0NmzZ3XHHXcoOjpa0dHR2r9/v5577jlFR0crJSWl18/BwIEDNWLEiIC24cOHq6qqSpLMcfbmv0GLFy82zxKNGjVKs2fP1qJFi8yzhnaYg67qzLFKamrqNft397x35Xjrqaee0po1a7Rnzx6NHj36mn1vvvlmDRgwQB9//HGXY/4yK44Zm8+SNscXTtvh0qVL2rx5s+bOndvu5wRzO3RUW78LLpdLcXFxluYCYZsQxcTEKCMjQ2VlZWZbU1OTysrKAjJ6oLsZhqH58+dr69at2rt3r4YMGRLqkNAB7W2/jIwMORyOgH3PqVOnVFVV1Wv2PZMnT9bRo0dVWVlp/hs3bpzy8vLMn3v7HNx9990tyq3/8Y9/1ODBgyVJQ4YMUWpqasAc1NbW6tChQ71mDurr6xUZGXiYEBUVpaamJkn2mIOu6syxitvtDugvSR6Px+zf3fPe2eOttWvXavXq1dq1a5fGjRvX7ud8+umnOnfunAYOHGhJ3Fez4pixsbFRR48eNeMLl+0gfVHG3efz6Qc/+EG7nxPM7dBR7f0uWJoLdKgEQw+zefNmw+l0Ghs2bDBOnDhhzJs3z0hMTGxRFhHtu3jxovHhhx8aH374oSHJePrpp40PP/zQ+O///u9QhxZ2CgoKjISEBGPfvn0BZSzr6+tDHRquw/Vsvx//+MdGenq6sXfvXuPIkSOG2+023G53CKMOvqurzBlG75+Dw4cPG9HR0caTTz5pfPTRR8Zrr71mxMfHG6+++qrZZ82aNUZiYqLx5ptvGr///e+NGTNm9KqS0/n5+cbf/M3fmGW333jjDWPAgAHGI488Yvbp7XNghfaOVWbPnm0sWbLE7P/uu+8a0dHRxlNPPWWcPHnSePzxx1stu92d897RMaxZs8aIiYkxfv3rXwfsRy9evGgYxhfHHD/5yU+M8vJy4/Tp08bbb79t3HHHHcatt95qXL58uUeMYeXKlcbu3buNTz75xKioqDBmzZplxMbGGsePHw8YZ0/eDs3uuece44EHHmjR3t3bob1jzSVLlhizZ882+zeX3V68eLFx8uRJo6SkpNWy21bkAmGdEBmGYTz//PNGenq6ERMTY4wfP944ePBgqEMKS7/97W8NSS3+5efnhzq0sNPaPEoKqPuPnut6tt/nn39u/OM//qNxww03GPHx8cZ3vvMd48yZM6ELuht8OSGywxxs377dGDlypOF0Oo1hw4YZL730UsDypqYm47HHHjNSUlIMp9NpTJ482Th16lSIorVebW2t8fDDDxvp6elGbGyscfPNNxs//elPDZ/PZ/bp7XNglWsdq3zzm99s8bf29ddfN772ta8ZMTExxm233Wa89dZbActDMe8dGcPgwYNb3Y8+/vjjhmEYRn19vZGVlWV85StfMRwOhzF48GDjoYceCvoX2h0Zw8KFC82+KSkpxvTp040PPvggYH09fTsYhmH84Q9/MCQZe/bsabGu7t4O7R1r5ufnG9/85jdbvGfMmDFGTEyMcfPNN7d6LGVFLhBhGFc9choAAAAAbCRs7yECAAAAgK4iIQIAAABgWyREAAAAAGyLhAgAAACAbZEQAQAAALAtEiIAAAAAtkVCBAAAAMC2SIgAAAAA2BYJEQAAAADbIiECAAAAYFskRAAAAABsi4QIAAAAgG39f+7aKTBiIVwAAAAAAElFTkSuQmCC\n",
"text/plain": [
"