g8a9 commited on
Commit
2893724
·
1 Parent(s): 8f2eaab

add skeleton

Browse files
Files changed (5) hide show
  1. app.py +17 -0
  2. corpus.py +5 -0
  3. requirements.txt +0 -0
  4. single.py +45 -0
  5. static/logo.png +0 -0
app.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import single
3
+ import corpus
4
+ from PIL import Image
5
+
6
+ PAGES = {
7
+ "Single Explanation": single,
8
+ "Corpus Explanation": corpus,
9
+ }
10
+
11
+ st.sidebar.title("Explore ferret!")
12
+
13
+ logo = Image.open("static/logo.png")
14
+ st.sidebar.image(logo, caption="ferret")
15
+
16
+ page = st.sidebar.radio("", list(PAGES.keys()))
17
+ PAGES[page].body()
corpus.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+
4
+ def body():
5
+ st.text("TBD")
requirements.txt ADDED
File without changes
single.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
3
+
4
+
5
+ @st.cache()
6
+ def get_model(model_name):
7
+ return AutoModelForSequenceClassification.from_pretrained(model_name)
8
+
9
+
10
+ @st.cache()
11
+ def get_tokenizer(tokenizer_name):
12
+ return AutoTokenizer.from_pretrained(tokenizer_name, use_fast=True)
13
+
14
+
15
+ def body():
16
+
17
+ st.title("Evaluate using *ferret* !")
18
+
19
+ st.markdown(
20
+ """
21
+
22
+ ### 👋 Hi!
23
+
24
+ Insert down below your text, choose a model and fire up ferret. We will use
25
+ *ferret* to:
26
+ 1. produce explanations with all supported methods
27
+ 2. evaluate explanations on state-of-the-art **faithfulness metrics**.
28
+ """
29
+ )
30
+
31
+ col1, col2 = st.columns([1, 1])
32
+ with col1:
33
+ model_name = st.text_input("HF Model", "g8a9/bert-base-cased_ami18")
34
+ with col2:
35
+ tokenizer_name = st.text_input("HF Tokenizer", "bert-base-cased")
36
+
37
+ text = st.text_input("Text")
38
+
39
+ compute = st.button("Compute")
40
+
41
+ if text and compute and model_name and tokenizer_name:
42
+ st.text("hellp")
43
+
44
+ # model = get_model(model_name)
45
+ # tokenizer = get_tokenizer(tokenizer_name)
static/logo.png ADDED