Spaces:
Sleeping
Sleeping
import pandas as pd | |
from typing import List | |
from os.path import join as opj | |
import json | |
import logging | |
from config import DatasetHelper, ModelHelper, LOCAL_RESULTS_DIR | |
logger = logging.getLogger(__name__) | |
def load_language_results( | |
model_id: str, dataset_id: str, lang_ids: List[str], contrast_string: str | |
): | |
lang_gaps = dict() | |
for lang in lang_ids: | |
try: | |
with open( | |
opj( | |
LOCAL_RESULTS_DIR, | |
"evaluation", | |
dataset_id, | |
f"results_{model_id}_{dataset_id}_devtest_{lang}_gender_{contrast_string}.json", | |
) | |
) as fp: | |
data = json.load(fp) | |
lang_gaps[lang] = data[f"{data['eval_metric']}_diff_mean"] | |
except FileNotFoundError: | |
logger.debug( | |
f"We could not find the result file for <model,dataset,lang>: {model_id}, {dataset_id}, {lang}" | |
) | |
lang_gaps[lang] = None | |
return lang_gaps | |
def read_all_configs(contrast_type: str): | |
dataset_h = DatasetHelper() | |
model_h = ModelHelper() | |
rows = list() | |
for dataset_config in dataset_h.dataset_configs: | |
for model_id in model_h.sanitized_model_ids: | |
contrast_info = dataset_config.group_contrasts[contrast_type] | |
contrast_string = ( | |
f"{contrast_info['majority_group']}_{contrast_info['minority_group']}" | |
) | |
lang_gaps = load_language_results( | |
model_id, | |
dataset_config.sanitized_id(), | |
dataset_config.langs, | |
contrast_string, | |
) | |
rows.extend( | |
[ | |
{ | |
"Model": model_id, | |
"Dataset": dataset_config.sanitized_id(), | |
"Language": lang, | |
"Type": dataset_config.speaking_condition.capitalize(), | |
"Gap": lang_gaps[lang], | |
} | |
for lang in lang_gaps | |
] | |
) | |
results_df = pd.DataFrame(rows) | |
return results_df | |