Spaces:
Sleeping
Sleeping
File size: 8,251 Bytes
0542773 fc63ec6 0542773 ad108b7 fc63ec6 ad108b7 fc63ec6 ad108b7 fc63ec6 ad108b7 0542773 ad108b7 0542773 86e679c fc63ec6 86e679c fc63ec6 86e679c fc63ec6 ad108b7 86e679c fc63ec6 9a7f023 86e679c 9a7f023 86e679c fc63ec6 86e679c fc63ec6 86e679c fc63ec6 86e679c fc63ec6 86e679c fc63ec6 ad108b7 86e679c 0542773 86e679c 0542773 fc63ec6 86e679c fc63ec6 86e679c 0542773 86e679c 0542773 fc63ec6 86e679c fc63ec6 86e679c fc63ec6 86e679c fc63ec6 86e679c fc63ec6 86e679c fc63ec6 86e679c 0542773 fc63ec6 ad108b7 0542773 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import gradio as gr
from typing import List, Tuple
import plotly.express as px
from huggingface_hub import snapshot_download
import os
import pdb
import logging
import pandas as pd
from config import LOCAL_RESULTS_DIR, CITATION_BUTTON_TEXT, DatasetHelper, ModelHelper
from parsing import read_all_configs
# Set up logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
handlers=[
# logging.FileHandler("app.log"),
logging.StreamHandler()
],
)
logger = logging.getLogger(__name__)
try:
print("Saving results locally at:", LOCAL_RESULTS_DIR)
snapshot_download(
repo_id="g8a9/fair-asr-results",
local_dir=LOCAL_RESULTS_DIR,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
ignore_patterns=["*samples*", "*transcripts*"],
token=os.environ.get("TOKEN"),
)
except Exception as e:
raise e
def format_dataframe(df, times_100=False):
if times_100:
df = df.map(lambda x: (f"{x * 100:.3f}%" if isinstance(x, (int, float)) else x))
else:
df = df.map(lambda x: (f"{x:.4f}" if isinstance(x, (int, float)) else x))
return df
def _build_models_with_nan_md(models_with_nan):
model_markups = [f"*{m}*" for m in models_with_nan]
return f"""
We are currently hiding the results of {', '.join(model_markups)} because they don't support all languages.
"""
def build_components(show_common_langs, selected_datasets: List[str]):
aggregated_df, lang_dfs, barplot_figs, models_with_nan = _populate_components(
show_common_langs, selected_datasets
)
models_with_nan_md = _build_models_with_nan_md(models_with_nan)
return (
gr.DataFrame(format_dataframe(aggregated_df)),
gr.DataFrame(format_dataframe(lang_dfs[0], times_100=True)),
gr.DataFrame(format_dataframe(lang_dfs[1], times_100=True)),
gr.Plot(barplot_figs[0]),
gr.Plot(barplot_figs[1]),
gr.Markdown(models_with_nan_md, visible=len(models_with_nan) > 0),
)
def _populate_components(
show_common_langs: bool, selected_datasets: List[str], contrast_type: str = "F-M"
) -> Tuple[pd.DataFrame, List[pd.DataFrame], List[px.bar], List[str]]:
results = read_all_configs(contrast_type)
if show_common_langs:
common_langs = model_h.get_common_langs()
logger.info(f"Common langs: {common_langs}")
results = results[results["Language"].isin(common_langs)]
missing_langs = (
results[results.isna().any(axis=1)]
.groupby("Model")["Language"]
.apply(list)
.to_dict()
)
for model, langs in missing_langs.items():
logger.info(
f"Model {model} is missing results for languages: {', '.join(langs)}"
)
models_with_nan = results[results.isna().any(axis=1)]["Model"].unique().tolist()
logger.info(f"Models with NaN values: {models_with_nan}")
results = results[~results["Model"].isin(models_with_nan)]
type_dfs = list()
lang_dfs = list()
barplot_figs = list()
for type, type_df in results.groupby("Type"):
# Aggregate main
aggregated_df = type_df.pivot_table(
index="Model",
values="Gap",
aggfunc=lambda x: 100 * x.abs().sum(),
)
aggregated_df = aggregated_df.rename(columns={"Gap": f"Gap ({type})"})
type_dfs.append(aggregated_df)
best_model = aggregated_df.index[0]
top_3_models = aggregated_df.index[:3].tolist()
# Aggregate by language
lang_df = type_df.pivot_table(
index="Model",
values="Gap",
columns="Language",
).reset_index()
lang_dfs.append(lang_df)
# Create plot
type_df["Gap"] = type_df["Gap"] * 100
barplot_fig = px.bar(
type_df.loc[results["Model"].isin(top_3_models)],
x="Language",
y="Gap",
color="Model",
title=f"{type}: Gaps by Language and Model (top 3, sorted by the best model)",
labels={
"Gap": f"{contrast_type} Gap (%)",
"Language": "Language",
"Model": "Model",
},
barmode="group",
)
lang_order = (
lang_df.set_index("Model")
.loc[best_model]
.sort_values(ascending=False)
.index
)
logger.info(f"Lang order: {lang_order}")
barplot_fig.update_layout(
xaxis={"categoryorder": "array", "categoryarray": lang_order}
)
barplot_figs.append(barplot_fig)
# pdb.set_trace()
aggregated_df = pd.concat(type_dfs, axis=1, join="inner")
aggregated_df["Avg"] = aggregated_df.mean(axis=1)
aggregated_df = aggregated_df.sort_values("Avg").reset_index()
# lang_df = results.pivot_table(
# index="Model",
# values="Gap",
# columns="Language",
# ).reset_index()
# results["Gap"] = results["Gap"] * 100
# barplot_fig = px.bar(
# results.loc[results["Model"].isin(top_3_models)],
# x="Language",
# y="Gap",
# color="Model",
# title="Gaps by Language and Model (top 3, sorted by the best model)",
# labels={
# "Gap": "Sum of Absolute Gaps (%)",
# "Language": "Language",
# "Model": "Model",
# },
# barmode="group",
# )
# lang_order = (
# lang_df.set_index("Model").loc[best_model].sort_values(ascending=False).index
# )
# logger.info(f"Lang order: {lang_order}")
# barplot_fig.update_layout(
# xaxis={"categoryorder": "array", "categoryarray": lang_order}
# )
return aggregated_df, lang_dfs, barplot_figs, models_with_nan
dataset_h = DatasetHelper()
model_h = ModelHelper()
with gr.Blocks() as fm_interface:
aggregated_df, lang_dfs, barplot_figs, model_with_nan = _populate_components(
show_common_langs=False, selected_datasets=dataset_h.get_dataset_names()
)
model_with_nans_md = gr.Markdown(_build_models_with_nan_md(model_with_nan))
gr.Markdown("### Sum of Absolute Gaps ⬇️")
aggregated_df_comp = gr.DataFrame(format_dataframe(aggregated_df))
gr.Markdown("#### Read: gaps by language")
lang_df_comp_0 = gr.DataFrame(format_dataframe(lang_dfs[0], times_100=True))
barplot_fig_comp_0 = gr.Plot(barplot_figs[0])
gr.Markdown("#### Spontaneous: gaps by language")
lang_df_comp_1 = gr.DataFrame(format_dataframe(lang_dfs[1], times_100=True))
barplot_fig_comp_1 = gr.Plot(barplot_figs[1])
###################
# LIST MAIN TABS
###################
tabs = [fm_interface]
titles = ["F-M Setup"]
banner = """
<style>
.full-width-image {
width: 100%;
height: auto;
margin: 0;
padding: 0;
}
</style>
<div>
<img src="https://huggingface.co./spaces/g8a9/fair-asr-leaderboard/raw/main/twists_banner.png" alt="Twists Banner" class="full-width-image">
</div>
"""
###################
# MAIN INTERFACE
###################
with gr.Blocks() as demo:
gr.HTML(banner)
with gr.Row() as config_row:
show_common_langs = gr.CheckboxGroup(
choices=["Show only common languages"],
label="Main configuration",
)
datasets_names = dataset_h.get_dataset_names()
include_datasets = gr.CheckboxGroup(
choices=datasets_names,
label="Include datasets",
value=datasets_names,
interactive=False,
)
show_common_langs.input(
build_components,
inputs=[show_common_langs, include_datasets],
outputs=[
aggregated_df_comp,
lang_df_comp_0,
lang_df_comp_1,
barplot_fig_comp_0,
barplot_fig_comp_1,
model_with_nans_md,
],
)
gr.TabbedInterface(tabs, titles)
gr.Markdown(
"""
### Citation
If you find these results useful, please cite the following paper:
"""
)
gr.Markdown(
f"""```
{CITATION_BUTTON_TEXT}"""
)
if __name__ == "__main__":
demo.launch()
|