Spaces:
Runtime error
Runtime error
Commit
·
0abf9df
1
Parent(s):
5156e7a
Add sample and bring back the steps slider
Browse files
app.py
CHANGED
@@ -21,18 +21,15 @@ ddim_pipeline = DDIMPipeline(unet=model, scheduler=ddim_scheduler)
|
|
21 |
pndm_scheduler = PNDMScheduler.from_config(model_id, subfolder="scheduler")
|
22 |
pndm_pipeline = PNDMPipeline(unet=model, scheduler=pndm_scheduler)
|
23 |
# run pipeline in inference (sample random noise and denoise)
|
24 |
-
def predict(seed=42,scheduler="ddim"):
|
25 |
torch.cuda.empty_cache()
|
26 |
generator = torch.manual_seed(seed)
|
27 |
if(scheduler == "ddim"):
|
28 |
-
image = ddim_pipeline(generator=generator, num_inference_steps=
|
29 |
-
image = image["sample"]
|
30 |
elif(scheduler == "ddpm"):
|
31 |
-
image = ddpm_pipeline(generator=generator)
|
32 |
-
#["sample"] doesnt work here for some reason
|
33 |
elif(scheduler == "pndm"):
|
34 |
-
image = pndm_pipeline(generator=generator, num_inference_steps=
|
35 |
-
#["sample"] doesnt work here for some reason
|
36 |
|
37 |
image_processed = image.cpu().permute(0, 2, 3, 1)
|
38 |
if scheduler == "pndm":
|
@@ -49,7 +46,7 @@ random_seed = random.randint(0, 2147483647)
|
|
49 |
gr.Interface(
|
50 |
predict,
|
51 |
inputs=[
|
52 |
-
|
53 |
gr.inputs.Slider(0, 2147483647, label='Seed', default=random_seed),
|
54 |
gr.inputs.Radio(["ddim", "ddpm", "pndm"], default="ddpm",label="Diffusion scheduler")
|
55 |
],
|
|
|
21 |
pndm_scheduler = PNDMScheduler.from_config(model_id, subfolder="scheduler")
|
22 |
pndm_pipeline = PNDMPipeline(unet=model, scheduler=pndm_scheduler)
|
23 |
# run pipeline in inference (sample random noise and denoise)
|
24 |
+
def predict(steps=100, seed=42,scheduler="ddim"):
|
25 |
torch.cuda.empty_cache()
|
26 |
generator = torch.manual_seed(seed)
|
27 |
if(scheduler == "ddim"):
|
28 |
+
image = ddim_pipeline(generator=generator, num_inference_steps=steps)["sample"]
|
|
|
29 |
elif(scheduler == "ddpm"):
|
30 |
+
image = ddpm_pipeline(generator=generator)["sample"]
|
|
|
31 |
elif(scheduler == "pndm"):
|
32 |
+
image = pndm_pipeline(generator=generator, num_inference_steps=steps)["sample"]
|
|
|
33 |
|
34 |
image_processed = image.cpu().permute(0, 2, 3, 1)
|
35 |
if scheduler == "pndm":
|
|
|
46 |
gr.Interface(
|
47 |
predict,
|
48 |
inputs=[
|
49 |
+
gr.inputs.Slider(1, 100, label='Inference Steps', default=20, step=1),
|
50 |
gr.inputs.Slider(0, 2147483647, label='Seed', default=random_seed),
|
51 |
gr.inputs.Radio(["ddim", "ddpm", "pndm"], default="ddpm",label="Diffusion scheduler")
|
52 |
],
|