"""Building blocks for TiTok. Copyright (2024) Bytedance Ltd. and/or its affiliates Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Reference: https://github.com/mlfoundations/open_clip/blob/main/src/open_clip/transformer.py """ import torch import torch.nn as nn from collections import OrderedDict class ResidualAttentionBlock(nn.Module): def __init__( self, d_model, n_head, mlp_ratio = 4.0, act_layer = nn.GELU, norm_layer = nn.LayerNorm ): super().__init__() self.ln_1 = norm_layer(d_model) self.attn = nn.MultiheadAttention(d_model, n_head) self.mlp_ratio = mlp_ratio # optionally we can disable the FFN if mlp_ratio > 0: self.ln_2 = norm_layer(d_model) mlp_width = int(d_model * mlp_ratio) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, mlp_width)), ("gelu", act_layer()), ("c_proj", nn.Linear(mlp_width, d_model)) ])) def attention( self, x: torch.Tensor ): return self.attn(x, x, x, need_weights=False)[0] def forward( self, x: torch.Tensor, ): attn_output = self.attention(x=self.ln_1(x)) x = x + attn_output if self.mlp_ratio > 0: x = x + self.mlp(self.ln_2(x)) return x def _expand_token(token, batch_size: int): return token.unsqueeze(0).expand(batch_size, -1, -1) class TiTokEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.image_size = config.dataset.preprocessing.crop_size self.patch_size = config.model.vq_model.vit_enc_patch_size self.grid_size = self.image_size // self.patch_size self.model_size = config.model.vq_model.vit_enc_model_size self.num_latent_tokens = config.model.vq_model.num_latent_tokens self.token_size = config.model.vq_model.token_size self.width = { "small": 512, "base": 768, "large": 1024, }[self.model_size] self.num_layers = { "small": 8, "base": 12, "large": 24, }[self.model_size] self.num_heads = { "small": 8, "base": 12, "large": 16, }[self.model_size] self.patch_embed = nn.Conv2d( in_channels=3, out_channels=self.width, kernel_size=self.patch_size, stride=self.patch_size, bias=True) scale = self.width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(1, self.width)) self.positional_embedding = nn.Parameter( scale * torch.randn(self.grid_size ** 2 + 1, self.width)) self.latent_token_positional_embedding = nn.Parameter( scale * torch.randn(self.num_latent_tokens, self.width)) self.ln_pre = nn.LayerNorm(self.width) self.transformer = nn.ModuleList() for i in range(self.num_layers): self.transformer.append(ResidualAttentionBlock( self.width, self.num_heads, mlp_ratio=4.0 )) self.ln_post = nn.LayerNorm(self.width) self.conv_out = nn.Conv2d(self.width, self.token_size, kernel_size=1, bias=True) def forward(self, pixel_values, latent_tokens): batch_size = pixel_values.shape[0] x = pixel_values x = self.patch_embed(x) x = x.reshape(x.shape[0], x.shape[1], -1) x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] # class embeddings and positional embeddings x = torch.cat([_expand_token(self.class_embedding, x.shape[0]).to(x.dtype), x], dim=1) x = x + self.positional_embedding.to(x.dtype) # shape = [*, grid ** 2 + 1, width] latent_tokens = _expand_token(latent_tokens, x.shape[0]).to(x.dtype) latent_tokens = latent_tokens + self.latent_token_positional_embedding.to(x.dtype) x = torch.cat([x, latent_tokens], dim=1) x = self.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND for i in range(self.num_layers): x = self.transformer[i](x) x = x.permute(1, 0, 2) # LND -> NLD latent_tokens = x[:, 1+self.grid_size**2:] latent_tokens = self.ln_post(latent_tokens) # fake 2D shape latent_tokens = latent_tokens.reshape(batch_size, self.width, self.num_latent_tokens, 1) latent_tokens = self.conv_out(latent_tokens) latent_tokens = latent_tokens.reshape(batch_size, self.token_size, 1, self.num_latent_tokens) return latent_tokens class TiTokDecoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.image_size = config.dataset.preprocessing.crop_size self.patch_size = config.model.vq_model.vit_dec_patch_size self.grid_size = self.image_size // self.patch_size self.model_size = config.model.vq_model.vit_dec_model_size self.num_latent_tokens = config.model.vq_model.num_latent_tokens self.token_size = config.model.vq_model.token_size self.width = { "small": 512, "base": 768, "large": 1024, }[self.model_size] self.num_layers = { "small": 8, "base": 12, "large": 24, }[self.model_size] self.num_heads = { "small": 8, "base": 12, "large": 16, }[self.model_size] self.decoder_embed = nn.Linear( self.token_size, self.width, bias=True) scale = self.width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(1, self.width)) self.positional_embedding = nn.Parameter( scale * torch.randn(self.grid_size ** 2 + 1, self.width)) # add mask token and query pos embed self.mask_token = nn.Parameter(scale * torch.randn(1, 1, self.width)) self.latent_token_positional_embedding = nn.Parameter( scale * torch.randn(self.num_latent_tokens, self.width)) self.ln_pre = nn.LayerNorm(self.width) self.transformer = nn.ModuleList() for i in range(self.num_layers): self.transformer.append(ResidualAttentionBlock( self.width, self.num_heads, mlp_ratio=4.0 )) self.ln_post = nn.LayerNorm(self.width) self.ffn = nn.Sequential( nn.Conv2d(self.width, 2 * self.width, 1, padding=0, bias=True), nn.Tanh(), nn.Conv2d(2 * self.width, 1024, 1, padding=0, bias=True), ) self.conv_out = nn.Identity() def forward(self, z_quantized): N, C, H, W = z_quantized.shape assert H == 1 and W == self.num_latent_tokens, f"{H}, {W}, {self.num_latent_tokens}" x = z_quantized.reshape(N, C*H, W).permute(0, 2, 1) # NLD x = self.decoder_embed(x) batchsize, seq_len, _ = x.shape mask_tokens = self.mask_token.repeat(batchsize, self.grid_size**2, 1).to(x.dtype) mask_tokens = torch.cat([_expand_token(self.class_embedding, mask_tokens.shape[0]).to(mask_tokens.dtype), mask_tokens], dim=1) mask_tokens = mask_tokens + self.positional_embedding.to(mask_tokens.dtype) x = x + self.latent_token_positional_embedding[:seq_len] x = torch.cat([mask_tokens, x], dim=1) x = self.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND for i in range(self.num_layers): x = self.transformer[i](x) x = x.permute(1, 0, 2) # LND -> NLD x = x[:, 1:1+self.grid_size**2] # remove cls embed x = self.ln_post(x) # N L D -> N D H W x = x.permute(0, 2, 1).reshape(batchsize, self.width, self.grid_size, self.grid_size) x = self.ffn(x.contiguous()) x = self.conv_out(x) return x