"""This file contains the model definition of TiTok. Copyright (2024) Bytedance Ltd. and/or its affiliates Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import torch import torch.nn as nn from einops import rearrange from .blocks import TiTokEncoder, TiTokDecoder from .quantizer import VectorQuantizer from .maskgit_vqgan import Decoder as Pixel_Decoder from .maskgit_vqgan import VectorQuantizer as Pixel_Quantizer from omegaconf import OmegaConf class TiTok(nn.Module): def __init__(self, config): super().__init__() self.config = config self.encoder = TiTokEncoder(config) self.decoder = TiTokDecoder(config) self.num_latent_tokens = config.model.vq_model.num_latent_tokens scale = self.encoder.width ** -0.5 self.latent_tokens = nn.Parameter( scale * torch.randn(self.num_latent_tokens, self.encoder.width)) self.apply(self._init_weights) self.quantize = VectorQuantizer( codebook_size=config.model.vq_model.codebook_size, token_size=config.model.vq_model.token_size, commitment_cost=config.model.vq_model.commitment_cost, use_l2_norm=config.model.vq_model.use_l2_norm,) self.pixel_quantize = Pixel_Quantizer( num_embeddings=1024, embedding_dim=256, commitment_cost=0.25) self.pixel_decoder = Pixel_Decoder(OmegaConf.create( {"channel_mult": [1, 1, 2, 2, 4], "num_resolutions": 5, "dropout": 0.0, "hidden_channels": 128, "num_channels": 3, "num_res_blocks": 2, "resolution": 256, "z_channels": 256})) def _init_weights(self, module): """ Initialize the weights. :param: module -> torch.nn.Module: module to initialize """ if isinstance(module, nn.Linear) or isinstance(module, nn.Conv1d) or isinstance(module, nn.Conv2d): module.weight.data = nn.init.trunc_normal_(module.weight.data, mean=0.0, std=0.02) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data = nn.init.trunc_normal_(module.weight.data, mean=0.0, std=0.02) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def encode(self, x): z = self.encoder(pixel_values=x, latent_tokens=self.latent_tokens) z_quantized, result_dict = self.quantize(z) return z_quantized, result_dict def decode(self, z_quantized): decoded_latent = self.decoder(z_quantized) quantized_states = torch.einsum( 'nchw,cd->ndhw', decoded_latent.softmax(1), self.pixel_quantize.embedding.weight) decoded = self.pixel_decoder(quantized_states) return decoded def decode_tokens(self, tokens): tokens = tokens.squeeze(1) batch, seq_len = tokens.shape # B x N z_quantized = self.quantize.get_codebook_entry( tokens.reshape(-1)).reshape(batch, 1, seq_len, -1) if self.quantize.use_l2_norm: z_quantized = torch.nn.functional.normalize(z_quantized, dim=-1) z_quantized = rearrange(z_quantized, 'b h w c -> b c h w').contiguous() decoded = self.decode(z_quantized) return decoded