Spaces:
Running
on
Zero
Running
on
Zero
"""This file contains code for MaskGIT-VQGAN. | |
This file may have been modified by Bytedance Ltd. and/or its affiliates (“Bytedance's Modifications”). | |
All Bytedance's Modifications are Copyright (year) Bytedance Ltd. and/or its affiliates. | |
Reference: | |
https://github.com/huggingface/open-muse/blob/main/muse/modeling_maskgit_vqgan.py | |
""" | |
# Copyright 2023 Google LLC and The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
r"""MaskGIT Tokenizer based on VQGAN. | |
This tokenizer is a reimplementation of VQGAN [https://arxiv.org/abs/2012.09841] | |
with several modifications. The non-local layers are removed from VQGAN for | |
faster speed. | |
""" | |
import math | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
# Conv2D with same padding | |
class Conv2dSame(nn.Conv2d): | |
def calc_same_pad(self, i: int, k: int, s: int, d: int) -> int: | |
return max((math.ceil(i / s) - 1) * s + (k - 1) * d + 1 - i, 0) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
ih, iw = x.size()[-2:] | |
pad_h = self.calc_same_pad(i=ih, k=self.kernel_size[0], s=self.stride[0], d=self.dilation[0]) | |
pad_w = self.calc_same_pad(i=iw, k=self.kernel_size[1], s=self.stride[1], d=self.dilation[1]) | |
if pad_h > 0 or pad_w > 0: | |
x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2]) | |
return super().forward(x) | |
class ResnetBlock(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int = None, | |
dropout_prob: float = 0.0, | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.out_channels_ = self.in_channels if self.out_channels is None else self.out_channels | |
self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) | |
self.conv1 = Conv2dSame(self.in_channels, self.out_channels_, kernel_size=3, bias=False) | |
self.norm2 = nn.GroupNorm(num_groups=32, num_channels=self.out_channels_, eps=1e-6, affine=True) | |
self.dropout = nn.Dropout(dropout_prob) | |
self.conv2 = Conv2dSame(self.out_channels_, self.out_channels_, kernel_size=3, bias=False) | |
if self.in_channels != self.out_channels_: | |
self.nin_shortcut = Conv2dSame(self.out_channels_, self.out_channels_, kernel_size=1, bias=False) | |
def forward(self, hidden_states): | |
residual = hidden_states | |
hidden_states = self.norm1(hidden_states) | |
hidden_states = F.silu(hidden_states) | |
hidden_states = self.conv1(hidden_states) | |
hidden_states = self.norm2(hidden_states) | |
hidden_states = F.silu(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.conv2(hidden_states) | |
if self.in_channels != self.out_channels_: | |
residual = self.nin_shortcut(hidden_states) | |
return hidden_states + residual | |
class DownsamplingBlock(nn.Module): | |
def __init__(self, config, block_idx: int): | |
super().__init__() | |
self.config = config | |
self.block_idx = block_idx | |
in_channel_mult = (1,) + tuple(self.config.channel_mult) | |
block_in = self.config.hidden_channels * in_channel_mult[self.block_idx] | |
block_out = self.config.hidden_channels * self.config.channel_mult[self.block_idx] | |
res_blocks = nn.ModuleList() | |
for _ in range(self.config.num_res_blocks): | |
res_blocks.append(ResnetBlock(block_in, block_out, dropout_prob=self.config.dropout)) | |
block_in = block_out | |
self.block = res_blocks | |
self.downsample = self.block_idx != self.config.num_resolutions - 1 | |
def forward(self, hidden_states): | |
for res_block in self.block: | |
hidden_states = res_block(hidden_states) | |
if self.downsample: | |
hidden_states = F.avg_pool2d(hidden_states, kernel_size=2, stride=2) | |
return hidden_states | |
class UpsamplingBlock(nn.Module): | |
def __init__(self, config, block_idx: int): | |
super().__init__() | |
self.config = config | |
self.block_idx = block_idx | |
if self.block_idx == self.config.num_resolutions - 1: | |
block_in = self.config.hidden_channels * self.config.channel_mult[-1] | |
else: | |
block_in = self.config.hidden_channels * self.config.channel_mult[self.block_idx + 1] | |
block_out = self.config.hidden_channels * self.config.channel_mult[self.block_idx] | |
res_blocks = [] | |
for _ in range(self.config.num_res_blocks): | |
res_blocks.append(ResnetBlock(block_in, block_out, dropout_prob=self.config.dropout)) | |
block_in = block_out | |
self.block = nn.ModuleList(res_blocks) | |
self.add_upsample = self.block_idx != 0 | |
if self.add_upsample: | |
self.upsample_conv = Conv2dSame(block_out, block_out, kernel_size=3) | |
def forward(self, hidden_states): | |
for res_block in self.block: | |
hidden_states = res_block(hidden_states) | |
if self.add_upsample: | |
hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest") | |
hidden_states = self.upsample_conv(hidden_states) | |
return hidden_states | |
class Encoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
# downsampling | |
self.conv_in = Conv2dSame(self.config.num_channels, self.config.hidden_channels, kernel_size=3, bias=False) | |
downsample_blocks = [] | |
for i_level in range(self.config.num_resolutions): | |
downsample_blocks.append(DownsamplingBlock(self.config, block_idx=i_level)) | |
self.down = nn.ModuleList(downsample_blocks) | |
# middle | |
mid_channels = self.config.hidden_channels * self.config.channel_mult[-1] | |
res_blocks = nn.ModuleList() | |
for _ in range(self.config.num_res_blocks): | |
res_blocks.append(ResnetBlock(mid_channels, mid_channels, dropout_prob=self.config.dropout)) | |
self.mid = res_blocks | |
# end | |
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=mid_channels, eps=1e-6, affine=True) | |
self.conv_out = Conv2dSame(mid_channels, self.config.z_channels, kernel_size=1) | |
def forward(self, pixel_values): | |
# downsampling | |
hidden_states = self.conv_in(pixel_values) | |
for block in self.down: | |
hidden_states = block(hidden_states) | |
# middle | |
for block in self.mid: | |
hidden_states = block(hidden_states) | |
# end | |
hidden_states = self.norm_out(hidden_states) | |
hidden_states = F.silu(hidden_states) | |
hidden_states = self.conv_out(hidden_states) | |
return hidden_states | |
class Decoder(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
# compute in_channel_mult, block_in and curr_res at lowest res | |
block_in = self.config.hidden_channels * self.config.channel_mult[self.config.num_resolutions - 1] | |
curr_res = self.config.resolution // 2 ** (self.config.num_resolutions - 1) | |
self.z_shape = (1, self.config.z_channels, curr_res, curr_res) | |
# z to block_in | |
self.conv_in = Conv2dSame(self.config.z_channels, block_in, kernel_size=3) | |
# middle | |
res_blocks = nn.ModuleList() | |
for _ in range(self.config.num_res_blocks): | |
res_blocks.append(ResnetBlock(block_in, block_in, dropout_prob=self.config.dropout)) | |
self.mid = res_blocks | |
# upsampling | |
upsample_blocks = [] | |
for i_level in reversed(range(self.config.num_resolutions)): | |
upsample_blocks.append(UpsamplingBlock(self.config, block_idx=i_level)) | |
self.up = nn.ModuleList(list(reversed(upsample_blocks))) # reverse to get consistent order | |
# end | |
block_out = self.config.hidden_channels * self.config.channel_mult[0] | |
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_out, eps=1e-6, affine=True) | |
self.conv_out = Conv2dSame(block_out, self.config.num_channels, kernel_size=3) | |
def forward(self, hidden_states): | |
# z to block_in | |
hidden_states = self.conv_in(hidden_states) | |
# middle | |
for block in self.mid: | |
hidden_states = block(hidden_states) | |
# upsampling | |
for block in reversed(self.up): | |
hidden_states = block(hidden_states) | |
# end | |
hidden_states = self.norm_out(hidden_states) | |
hidden_states = F.silu(hidden_states) | |
hidden_states = self.conv_out(hidden_states) | |
return hidden_states | |
class VectorQuantizer(nn.Module): | |
""" | |
see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py | |
Discretization bottleneck part of the VQ-VAE. | |
""" | |
def __init__(self, num_embeddings, embedding_dim, commitment_cost): | |
r""" | |
Args: | |
num_embeddings: number of vectors in the quantized space. | |
embedding_dim: dimensionality of the tensors in the quantized space. | |
Inputs to the modules must be in this format as well. | |
commitment_cost: scalar which controls the weighting of the loss terms | |
(see equation 4 in the paper https://arxiv.org/abs/1711.00937 - this variable is Beta). | |
""" | |
super().__init__() | |
self.num_embeddings = num_embeddings | |
self.embedding_dim = embedding_dim | |
self.commitment_cost = commitment_cost | |
self.embedding = nn.Embedding(num_embeddings, embedding_dim) | |
self.embedding.weight.data.uniform_(-1.0 / num_embeddings, 1.0 / num_embeddings) | |
def forward(self, hidden_states, return_loss=False): | |
""" | |
Inputs the output of the encoder network z and maps it to a discrete one-hot vector that is the index of the | |
closest embedding vector e_j z (continuous) -> z_q (discrete) z.shape = (batch, channel, height, width) | |
quantization pipeline: | |
1. get encoder input (B,C,H,W) | |
2. flatten input to (B*H*W,C) | |
""" | |
# reshape z -> (batch, height, width, channel) and flatten | |
hidden_states = hidden_states.permute(0, 2, 3, 1).contiguous() | |
distances = self.compute_distances(hidden_states) | |
min_encoding_indices = torch.argmin(distances, axis=1).unsqueeze(1) | |
min_encodings = torch.zeros(min_encoding_indices.shape[0], self.num_embeddings).to(hidden_states) | |
min_encodings.scatter_(1, min_encoding_indices, 1) | |
# get quantized latent vectors | |
z_q = torch.matmul(min_encodings, self.embedding.weight).view(hidden_states.shape) | |
# reshape to (batch, num_tokens) | |
min_encoding_indices = min_encoding_indices.reshape(hidden_states.shape[0], -1) | |
# compute loss for embedding | |
loss = None | |
if return_loss: | |
loss = torch.mean((z_q.detach() - hidden_states) ** 2) + self.commitment_cost * torch.mean( | |
(z_q - hidden_states.detach()) ** 2 | |
) | |
# preserve gradients | |
z_q = hidden_states + (z_q - hidden_states).detach() | |
# reshape back to match original input shape | |
z_q = z_q.permute(0, 3, 1, 2).contiguous() | |
return z_q, min_encoding_indices, loss | |
def compute_distances(self, hidden_states): | |
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z | |
hidden_states_flattended = hidden_states.reshape((-1, self.embedding_dim)) | |
emb_weights = self.embedding.weight.t() | |
inputs_norm_sq = hidden_states_flattended.pow(2.0).sum(dim=1, keepdim=True) | |
codebook_t_norm_sq = emb_weights.pow(2.0).sum(dim=0, keepdim=True) | |
distances = torch.addmm( | |
inputs_norm_sq + codebook_t_norm_sq, | |
hidden_states_flattended, | |
emb_weights, | |
alpha=-2.0, | |
) | |
return distances | |
def get_codebook_entry(self, indices): | |
# indices are expected to be of shape (batch, num_tokens) | |
# get quantized latent vectors | |
if len(indices.shape) == 2: | |
batch, num_tokens = indices.shape | |
z_q = self.embedding(indices) | |
z_q = z_q.reshape(batch, int(math.sqrt(num_tokens)), int(math.sqrt(num_tokens)), -1).permute(0, 3, 1, 2) | |
elif len(indices.shape) == 3: | |
batch, height, width = indices.shape | |
indices = indices.view(batch, -1) | |
z_q = self.embedding(indices) | |
z_q = z_q.reshape(batch, height, width, -1).permute(0, 3, 1, 2) | |
else: | |
print(indices.shape) | |
raise NotImplementedError | |
return z_q | |
# adapted from https://github.com/kakaobrain/rq-vae-transformer/blob/main/rqvae/models/rqvae/quantizations.py#L372 | |
def get_soft_code(self, hidden_states, temp=1.0, stochastic=False): | |
hidden_states = hidden_states.permute(0, 2, 3, 1).contiguous() # (batch, height, width, channel) | |
distances = self.compute_distances(hidden_states) # (batch * height * width, num_embeddings) | |
soft_code = F.softmax(-distances / temp, dim=-1) # (batch * height * width, num_embeddings) | |
if stochastic: | |
code = torch.multinomial(soft_code, 1) # (batch * height * width, 1) | |
else: | |
code = distances.argmin(dim=-1) # (batch * height * width) | |
code = code.reshape(hidden_states.shape[0], -1) # (batch, height * width) | |
batch, num_tokens = code.shape | |
soft_code = soft_code.reshape(batch, num_tokens, -1) # (batch, height * width, num_embeddings) | |
return soft_code, code | |
def get_code(self, hidden_states): | |
# reshape z -> (batch, height, width, channel) | |
hidden_states = hidden_states.permute(0, 2, 3, 1).contiguous() | |
distances = self.compute_distances(hidden_states) | |
indices = torch.argmin(distances, axis=1).unsqueeze(1) | |
indices = indices.reshape(hidden_states.shape[0], -1) | |
return indices | |