Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,864 Bytes
dada74e 062a2e2 dada74e 062a2e2 dada74e df1f51c dada74e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
"""Demo file for sampling images from TiTok.
Copyright (2024) Bytedance Ltd. and/or its affiliates
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import torch
from omegaconf import OmegaConf
from modeling.titok import TiTok
from modeling.maskgit import ImageBert
def get_config_cli():
cli_conf = OmegaConf.from_cli()
yaml_conf = OmegaConf.load(cli_conf.config)
conf = OmegaConf.merge(yaml_conf, cli_conf)
return conf
def get_config(config_path):
conf = OmegaConf.load(config_path)
return conf
def get_titok_tokenizer(config):
tokenizer = TiTok(config)
tokenizer.load_state_dict(torch.load(config.experiment.tokenizer_checkpoint, map_location="cpu"))
tokenizer.eval()
tokenizer.requires_grad_(False)
return tokenizer
def get_titok_generator(config):
generator = ImageBert(config)
generator.load_state_dict(torch.load(config.experiment.generator_checkpoint, map_location="cpu"))
generator.eval()
generator.requires_grad_(False)
return generator
@torch.no_grad()
def sample_fn(generator,
tokenizer,
labels=None,
guidance_scale=3.0,
randomize_temperature=2.0,
num_sample_steps=8,
device="cuda"):
print(f"generator:{generator}")
print(f"tokenizer:{tokenizer}")
print(f"labels:{labels}")
print(f"guidance_scale:{guidance_scale}")
print(f"randomize_temperature:{randomize_temperature}")
print(f"num_sample_steps:{num_sample_steps}")
print(f"device:{device}")
generator.eval()
tokenizer.eval()
if labels is None:
# goldfish, chicken, tiger, cat, hourglass, ship, dog, race car, airliner, teddy bear, random
labels = [1, 7, 282, 604, 724, 179, 751, 404, 850, torch.randint(0, 999, size=(1,))]
labels = torch.LongTensor(labels).to(device)
generated_tokens = generator.generate(
condition=labels,
guidance_scale=guidance_scale,
randomize_temperature=randomize_temperature,
num_sample_steps=num_sample_steps)
generated_image = tokenizer.decode_tokens(
generated_tokens.view(generated_tokens.shape[0], -1)
)
generated_image = torch.clamp(generated_image, 0.0, 1.0)
generated_image = (generated_image * 255.0).permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy()
return generated_image |