File size: 8,662 Bytes
dada74e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
"""Building blocks for TiTok.

Copyright (2024) Bytedance Ltd. and/or its affiliates

Licensed under the Apache License, Version 2.0 (the "License"); 
you may not use this file except in compliance with the License. 
You may obtain a copy of the License at 

    http://www.apache.org/licenses/LICENSE-2.0 

Unless required by applicable law or agreed to in writing, software 
distributed under the License is distributed on an "AS IS" BASIS, 
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
See the License for the specific language governing permissions and 
limitations under the License. 

Reference: 
    https://github.com/mlfoundations/open_clip/blob/main/src/open_clip/transformer.py
"""

import torch
import torch.nn as nn
from collections import OrderedDict


class ResidualAttentionBlock(nn.Module):
    def __init__(
            self,
            d_model,
            n_head,
            mlp_ratio = 4.0,
            act_layer = nn.GELU,
            norm_layer = nn.LayerNorm
        ):
        super().__init__()

        self.ln_1 = norm_layer(d_model)
        self.attn = nn.MultiheadAttention(d_model, n_head)
        self.mlp_ratio = mlp_ratio
        # optionally we can disable the FFN
        if mlp_ratio > 0:
            self.ln_2 = norm_layer(d_model)
            mlp_width = int(d_model * mlp_ratio)
            self.mlp = nn.Sequential(OrderedDict([
                ("c_fc", nn.Linear(d_model, mlp_width)),
                ("gelu", act_layer()),
                ("c_proj", nn.Linear(mlp_width, d_model))
            ]))

    def attention(
            self,
            x: torch.Tensor
    ):
        return self.attn(x, x, x, need_weights=False)[0]

    def forward(
            self,
            x: torch.Tensor,
    ):
        attn_output = self.attention(x=self.ln_1(x))
        x = x + attn_output
        if self.mlp_ratio > 0:
            x = x + self.mlp(self.ln_2(x))
        return x


def _expand_token(token, batch_size: int):
    return token.unsqueeze(0).expand(batch_size, -1, -1)


class TiTokEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.image_size = config.dataset.preprocessing.crop_size 
        self.patch_size = config.model.vq_model.vit_enc_patch_size
        self.grid_size = self.image_size // self.patch_size
        self.model_size = config.model.vq_model.vit_enc_model_size
        self.num_latent_tokens = config.model.vq_model.num_latent_tokens
        self.token_size = config.model.vq_model.token_size

        self.width = {
                "small": 512,
                "base": 768,
                "large": 1024,
            }[self.model_size]
        self.num_layers = {
                "small": 8,
                "base": 12,
                "large": 24,
            }[self.model_size]
        self.num_heads = {
                "small": 8,
                "base": 12,
                "large": 16,
            }[self.model_size]
        
        self.patch_embed = nn.Conv2d(
            in_channels=3, out_channels=self.width,
              kernel_size=self.patch_size, stride=self.patch_size, bias=True)
        
        scale = self.width ** -0.5
        self.class_embedding = nn.Parameter(scale * torch.randn(1, self.width))
        self.positional_embedding = nn.Parameter(
                scale * torch.randn(self.grid_size ** 2 + 1, self.width))
        self.latent_token_positional_embedding = nn.Parameter(
            scale * torch.randn(self.num_latent_tokens, self.width))
        self.ln_pre = nn.LayerNorm(self.width)
        self.transformer = nn.ModuleList()
        for i in range(self.num_layers):
            self.transformer.append(ResidualAttentionBlock(
                self.width, self.num_heads, mlp_ratio=4.0
            ))
        self.ln_post = nn.LayerNorm(self.width)
        self.conv_out = nn.Conv2d(self.width, self.token_size, kernel_size=1, bias=True)

    def forward(self, pixel_values, latent_tokens):
        batch_size = pixel_values.shape[0]
        x = pixel_values
        x = self.patch_embed(x)
        x = x.reshape(x.shape[0], x.shape[1], -1)
        x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
        # class embeddings and positional embeddings
        x = torch.cat([_expand_token(self.class_embedding, x.shape[0]).to(x.dtype), x], dim=1)
        x = x + self.positional_embedding.to(x.dtype) # shape = [*, grid ** 2 + 1, width]
        

        latent_tokens = _expand_token(latent_tokens, x.shape[0]).to(x.dtype)
        latent_tokens = latent_tokens + self.latent_token_positional_embedding.to(x.dtype)
        x = torch.cat([x, latent_tokens], dim=1)

        x = self.ln_pre(x)
        x = x.permute(1, 0, 2)  # NLD -> LND
        for i in range(self.num_layers):
            x = self.transformer[i](x)
        x = x.permute(1, 0, 2)  # LND -> NLD
        
        latent_tokens = x[:, 1+self.grid_size**2:]
        latent_tokens = self.ln_post(latent_tokens)
        # fake 2D shape
        latent_tokens = latent_tokens.reshape(batch_size, self.width, self.num_latent_tokens, 1)
        latent_tokens = self.conv_out(latent_tokens)
        latent_tokens = latent_tokens.reshape(batch_size, self.token_size, 1, self.num_latent_tokens)
        return latent_tokens
    

class TiTokDecoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.image_size = config.dataset.preprocessing.crop_size
        self.patch_size = config.model.vq_model.vit_dec_patch_size
        self.grid_size = self.image_size // self.patch_size
        self.model_size = config.model.vq_model.vit_dec_model_size
        self.num_latent_tokens = config.model.vq_model.num_latent_tokens
        self.token_size = config.model.vq_model.token_size
        self.width = {
                "small": 512,
                "base": 768,
                "large": 1024,
            }[self.model_size]
        self.num_layers = {
                "small": 8,
                "base": 12,
                "large": 24,
            }[self.model_size]
        self.num_heads = {
                "small": 8,
                "base": 12,
                "large": 16,
            }[self.model_size]

        self.decoder_embed = nn.Linear(
            self.token_size, self.width, bias=True)
        scale = self.width ** -0.5
        self.class_embedding = nn.Parameter(scale * torch.randn(1, self.width))
        self.positional_embedding = nn.Parameter(
                scale * torch.randn(self.grid_size ** 2 + 1, self.width))
        # add mask token and query pos embed
        self.mask_token = nn.Parameter(scale * torch.randn(1, 1, self.width))
        self.latent_token_positional_embedding = nn.Parameter(
            scale * torch.randn(self.num_latent_tokens, self.width))
        self.ln_pre = nn.LayerNorm(self.width)
        self.transformer = nn.ModuleList()
        for i in range(self.num_layers):
            self.transformer.append(ResidualAttentionBlock(
                self.width, self.num_heads, mlp_ratio=4.0
            ))
        self.ln_post = nn.LayerNorm(self.width)

        self.ffn = nn.Sequential(
            nn.Conv2d(self.width, 2 * self.width, 1, padding=0, bias=True),
            nn.Tanh(),
            nn.Conv2d(2 * self.width, 1024, 1, padding=0, bias=True),
        )
        self.conv_out = nn.Identity()
    
    def forward(self, z_quantized):
        N, C, H, W = z_quantized.shape
        assert H == 1 and W == self.num_latent_tokens, f"{H}, {W}, {self.num_latent_tokens}"
        x = z_quantized.reshape(N, C*H, W).permute(0, 2, 1) # NLD
        x = self.decoder_embed(x)

        batchsize, seq_len, _ = x.shape

        mask_tokens = self.mask_token.repeat(batchsize, self.grid_size**2, 1).to(x.dtype)
        mask_tokens = torch.cat([_expand_token(self.class_embedding, mask_tokens.shape[0]).to(mask_tokens.dtype),
                                    mask_tokens], dim=1)
        mask_tokens = mask_tokens + self.positional_embedding.to(mask_tokens.dtype)
        x = x + self.latent_token_positional_embedding[:seq_len]
        x = torch.cat([mask_tokens, x], dim=1)
        
        x = self.ln_pre(x)
        x = x.permute(1, 0, 2)  # NLD -> LND
        for i in range(self.num_layers):
            x = self.transformer[i](x)
        x = x.permute(1, 0, 2)  # LND -> NLD
        x = x[:, 1:1+self.grid_size**2] # remove cls embed
        x = self.ln_post(x)
        # N L D -> N D H W
        x = x.permute(0, 2, 1).reshape(batchsize, self.width, self.grid_size, self.grid_size)
        x = self.ffn(x.contiguous())
        x = self.conv_out(x)
        return x