Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,520 Bytes
dada74e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
"""This file contains code for MaskGIT-VQGAN.
This file may have been modified by Bytedance Ltd. and/or its affiliates (“Bytedance's Modifications”).
All Bytedance's Modifications are Copyright (year) Bytedance Ltd. and/or its affiliates.
Reference:
https://github.com/huggingface/open-muse/blob/main/muse/modeling_maskgit_vqgan.py
"""
# Copyright 2023 Google LLC and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""MaskGIT Tokenizer based on VQGAN.
This tokenizer is a reimplementation of VQGAN [https://arxiv.org/abs/2012.09841]
with several modifications. The non-local layers are removed from VQGAN for
faster speed.
"""
import math
import torch
import torch.nn.functional as F
from torch import nn
# Conv2D with same padding
class Conv2dSame(nn.Conv2d):
def calc_same_pad(self, i: int, k: int, s: int, d: int) -> int:
return max((math.ceil(i / s) - 1) * s + (k - 1) * d + 1 - i, 0)
def forward(self, x: torch.Tensor) -> torch.Tensor:
ih, iw = x.size()[-2:]
pad_h = self.calc_same_pad(i=ih, k=self.kernel_size[0], s=self.stride[0], d=self.dilation[0])
pad_w = self.calc_same_pad(i=iw, k=self.kernel_size[1], s=self.stride[1], d=self.dilation[1])
if pad_h > 0 or pad_w > 0:
x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2])
return super().forward(x)
class ResnetBlock(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int = None,
dropout_prob: float = 0.0,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.out_channels_ = self.in_channels if self.out_channels is None else self.out_channels
self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
self.conv1 = Conv2dSame(self.in_channels, self.out_channels_, kernel_size=3, bias=False)
self.norm2 = nn.GroupNorm(num_groups=32, num_channels=self.out_channels_, eps=1e-6, affine=True)
self.dropout = nn.Dropout(dropout_prob)
self.conv2 = Conv2dSame(self.out_channels_, self.out_channels_, kernel_size=3, bias=False)
if self.in_channels != self.out_channels_:
self.nin_shortcut = Conv2dSame(self.out_channels_, self.out_channels_, kernel_size=1, bias=False)
def forward(self, hidden_states):
residual = hidden_states
hidden_states = self.norm1(hidden_states)
hidden_states = F.silu(hidden_states)
hidden_states = self.conv1(hidden_states)
hidden_states = self.norm2(hidden_states)
hidden_states = F.silu(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.in_channels != self.out_channels_:
residual = self.nin_shortcut(hidden_states)
return hidden_states + residual
class DownsamplingBlock(nn.Module):
def __init__(self, config, block_idx: int):
super().__init__()
self.config = config
self.block_idx = block_idx
in_channel_mult = (1,) + tuple(self.config.channel_mult)
block_in = self.config.hidden_channels * in_channel_mult[self.block_idx]
block_out = self.config.hidden_channels * self.config.channel_mult[self.block_idx]
res_blocks = nn.ModuleList()
for _ in range(self.config.num_res_blocks):
res_blocks.append(ResnetBlock(block_in, block_out, dropout_prob=self.config.dropout))
block_in = block_out
self.block = res_blocks
self.downsample = self.block_idx != self.config.num_resolutions - 1
def forward(self, hidden_states):
for res_block in self.block:
hidden_states = res_block(hidden_states)
if self.downsample:
hidden_states = F.avg_pool2d(hidden_states, kernel_size=2, stride=2)
return hidden_states
class UpsamplingBlock(nn.Module):
def __init__(self, config, block_idx: int):
super().__init__()
self.config = config
self.block_idx = block_idx
if self.block_idx == self.config.num_resolutions - 1:
block_in = self.config.hidden_channels * self.config.channel_mult[-1]
else:
block_in = self.config.hidden_channels * self.config.channel_mult[self.block_idx + 1]
block_out = self.config.hidden_channels * self.config.channel_mult[self.block_idx]
res_blocks = []
for _ in range(self.config.num_res_blocks):
res_blocks.append(ResnetBlock(block_in, block_out, dropout_prob=self.config.dropout))
block_in = block_out
self.block = nn.ModuleList(res_blocks)
self.add_upsample = self.block_idx != 0
if self.add_upsample:
self.upsample_conv = Conv2dSame(block_out, block_out, kernel_size=3)
def forward(self, hidden_states):
for res_block in self.block:
hidden_states = res_block(hidden_states)
if self.add_upsample:
hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
hidden_states = self.upsample_conv(hidden_states)
return hidden_states
class Encoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
# downsampling
self.conv_in = Conv2dSame(self.config.num_channels, self.config.hidden_channels, kernel_size=3, bias=False)
downsample_blocks = []
for i_level in range(self.config.num_resolutions):
downsample_blocks.append(DownsamplingBlock(self.config, block_idx=i_level))
self.down = nn.ModuleList(downsample_blocks)
# middle
mid_channels = self.config.hidden_channels * self.config.channel_mult[-1]
res_blocks = nn.ModuleList()
for _ in range(self.config.num_res_blocks):
res_blocks.append(ResnetBlock(mid_channels, mid_channels, dropout_prob=self.config.dropout))
self.mid = res_blocks
# end
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=mid_channels, eps=1e-6, affine=True)
self.conv_out = Conv2dSame(mid_channels, self.config.z_channels, kernel_size=1)
def forward(self, pixel_values):
# downsampling
hidden_states = self.conv_in(pixel_values)
for block in self.down:
hidden_states = block(hidden_states)
# middle
for block in self.mid:
hidden_states = block(hidden_states)
# end
hidden_states = self.norm_out(hidden_states)
hidden_states = F.silu(hidden_states)
hidden_states = self.conv_out(hidden_states)
return hidden_states
class Decoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
# compute in_channel_mult, block_in and curr_res at lowest res
block_in = self.config.hidden_channels * self.config.channel_mult[self.config.num_resolutions - 1]
curr_res = self.config.resolution // 2 ** (self.config.num_resolutions - 1)
self.z_shape = (1, self.config.z_channels, curr_res, curr_res)
# z to block_in
self.conv_in = Conv2dSame(self.config.z_channels, block_in, kernel_size=3)
# middle
res_blocks = nn.ModuleList()
for _ in range(self.config.num_res_blocks):
res_blocks.append(ResnetBlock(block_in, block_in, dropout_prob=self.config.dropout))
self.mid = res_blocks
# upsampling
upsample_blocks = []
for i_level in reversed(range(self.config.num_resolutions)):
upsample_blocks.append(UpsamplingBlock(self.config, block_idx=i_level))
self.up = nn.ModuleList(list(reversed(upsample_blocks))) # reverse to get consistent order
# end
block_out = self.config.hidden_channels * self.config.channel_mult[0]
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_out, eps=1e-6, affine=True)
self.conv_out = Conv2dSame(block_out, self.config.num_channels, kernel_size=3)
def forward(self, hidden_states):
# z to block_in
hidden_states = self.conv_in(hidden_states)
# middle
for block in self.mid:
hidden_states = block(hidden_states)
# upsampling
for block in reversed(self.up):
hidden_states = block(hidden_states)
# end
hidden_states = self.norm_out(hidden_states)
hidden_states = F.silu(hidden_states)
hidden_states = self.conv_out(hidden_states)
return hidden_states
class VectorQuantizer(nn.Module):
"""
see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py
Discretization bottleneck part of the VQ-VAE.
"""
def __init__(self, num_embeddings, embedding_dim, commitment_cost):
r"""
Args:
num_embeddings: number of vectors in the quantized space.
embedding_dim: dimensionality of the tensors in the quantized space.
Inputs to the modules must be in this format as well.
commitment_cost: scalar which controls the weighting of the loss terms
(see equation 4 in the paper https://arxiv.org/abs/1711.00937 - this variable is Beta).
"""
super().__init__()
self.num_embeddings = num_embeddings
self.embedding_dim = embedding_dim
self.commitment_cost = commitment_cost
self.embedding = nn.Embedding(num_embeddings, embedding_dim)
self.embedding.weight.data.uniform_(-1.0 / num_embeddings, 1.0 / num_embeddings)
def forward(self, hidden_states, return_loss=False):
"""
Inputs the output of the encoder network z and maps it to a discrete one-hot vector that is the index of the
closest embedding vector e_j z (continuous) -> z_q (discrete) z.shape = (batch, channel, height, width)
quantization pipeline:
1. get encoder input (B,C,H,W)
2. flatten input to (B*H*W,C)
"""
# reshape z -> (batch, height, width, channel) and flatten
hidden_states = hidden_states.permute(0, 2, 3, 1).contiguous()
distances = self.compute_distances(hidden_states)
min_encoding_indices = torch.argmin(distances, axis=1).unsqueeze(1)
min_encodings = torch.zeros(min_encoding_indices.shape[0], self.num_embeddings).to(hidden_states)
min_encodings.scatter_(1, min_encoding_indices, 1)
# get quantized latent vectors
z_q = torch.matmul(min_encodings, self.embedding.weight).view(hidden_states.shape)
# reshape to (batch, num_tokens)
min_encoding_indices = min_encoding_indices.reshape(hidden_states.shape[0], -1)
# compute loss for embedding
loss = None
if return_loss:
loss = torch.mean((z_q.detach() - hidden_states) ** 2) + self.commitment_cost * torch.mean(
(z_q - hidden_states.detach()) ** 2
)
# preserve gradients
z_q = hidden_states + (z_q - hidden_states).detach()
# reshape back to match original input shape
z_q = z_q.permute(0, 3, 1, 2).contiguous()
return z_q, min_encoding_indices, loss
def compute_distances(self, hidden_states):
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
hidden_states_flattended = hidden_states.reshape((-1, self.embedding_dim))
emb_weights = self.embedding.weight.t()
inputs_norm_sq = hidden_states_flattended.pow(2.0).sum(dim=1, keepdim=True)
codebook_t_norm_sq = emb_weights.pow(2.0).sum(dim=0, keepdim=True)
distances = torch.addmm(
inputs_norm_sq + codebook_t_norm_sq,
hidden_states_flattended,
emb_weights,
alpha=-2.0,
)
return distances
def get_codebook_entry(self, indices):
# indices are expected to be of shape (batch, num_tokens)
# get quantized latent vectors
if len(indices.shape) == 2:
batch, num_tokens = indices.shape
z_q = self.embedding(indices)
z_q = z_q.reshape(batch, int(math.sqrt(num_tokens)), int(math.sqrt(num_tokens)), -1).permute(0, 3, 1, 2)
elif len(indices.shape) == 3:
batch, height, width = indices.shape
indices = indices.view(batch, -1)
z_q = self.embedding(indices)
z_q = z_q.reshape(batch, height, width, -1).permute(0, 3, 1, 2)
else:
print(indices.shape)
raise NotImplementedError
return z_q
# adapted from https://github.com/kakaobrain/rq-vae-transformer/blob/main/rqvae/models/rqvae/quantizations.py#L372
def get_soft_code(self, hidden_states, temp=1.0, stochastic=False):
hidden_states = hidden_states.permute(0, 2, 3, 1).contiguous() # (batch, height, width, channel)
distances = self.compute_distances(hidden_states) # (batch * height * width, num_embeddings)
soft_code = F.softmax(-distances / temp, dim=-1) # (batch * height * width, num_embeddings)
if stochastic:
code = torch.multinomial(soft_code, 1) # (batch * height * width, 1)
else:
code = distances.argmin(dim=-1) # (batch * height * width)
code = code.reshape(hidden_states.shape[0], -1) # (batch, height * width)
batch, num_tokens = code.shape
soft_code = soft_code.reshape(batch, num_tokens, -1) # (batch, height * width, num_embeddings)
return soft_code, code
def get_code(self, hidden_states):
# reshape z -> (batch, height, width, channel)
hidden_states = hidden_states.permute(0, 2, 3, 1).contiguous()
distances = self.compute_distances(hidden_states)
indices = torch.argmin(distances, axis=1).unsqueeze(1)
indices = indices.reshape(hidden_states.shape[0], -1)
return indices
|