File size: 14,520 Bytes
dada74e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
"""This file contains code for MaskGIT-VQGAN.

This file may have been modified by Bytedance Ltd. and/or its affiliates (“Bytedance's Modifications”).
All Bytedance's Modifications are Copyright (year) Bytedance Ltd. and/or its affiliates. 

Reference:
    https://github.com/huggingface/open-muse/blob/main/muse/modeling_maskgit_vqgan.py
"""
# Copyright 2023 Google LLC and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

r"""MaskGIT Tokenizer based on VQGAN.

This tokenizer is a reimplementation of VQGAN [https://arxiv.org/abs/2012.09841]
with several modifications. The non-local layers are removed from VQGAN for
faster speed.
"""

import math

import torch
import torch.nn.functional as F
from torch import nn


# Conv2D with same padding
class Conv2dSame(nn.Conv2d):
    def calc_same_pad(self, i: int, k: int, s: int, d: int) -> int:
        return max((math.ceil(i / s) - 1) * s + (k - 1) * d + 1 - i, 0)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        ih, iw = x.size()[-2:]

        pad_h = self.calc_same_pad(i=ih, k=self.kernel_size[0], s=self.stride[0], d=self.dilation[0])
        pad_w = self.calc_same_pad(i=iw, k=self.kernel_size[1], s=self.stride[1], d=self.dilation[1])

        if pad_h > 0 or pad_w > 0:
            x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2])
        return super().forward(x)


class ResnetBlock(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int = None,
        dropout_prob: float = 0.0,
    ):
        super().__init__()

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.out_channels_ = self.in_channels if self.out_channels is None else self.out_channels

        self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
        self.conv1 = Conv2dSame(self.in_channels, self.out_channels_, kernel_size=3, bias=False)

        self.norm2 = nn.GroupNorm(num_groups=32, num_channels=self.out_channels_, eps=1e-6, affine=True)
        self.dropout = nn.Dropout(dropout_prob)
        self.conv2 = Conv2dSame(self.out_channels_, self.out_channels_, kernel_size=3, bias=False)

        if self.in_channels != self.out_channels_:
            self.nin_shortcut = Conv2dSame(self.out_channels_, self.out_channels_, kernel_size=1, bias=False)

    def forward(self, hidden_states):
        residual = hidden_states
        hidden_states = self.norm1(hidden_states)
        hidden_states = F.silu(hidden_states)
        hidden_states = self.conv1(hidden_states)

        hidden_states = self.norm2(hidden_states)
        hidden_states = F.silu(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.conv2(hidden_states)

        if self.in_channels != self.out_channels_:
            residual = self.nin_shortcut(hidden_states)

        return hidden_states + residual


class DownsamplingBlock(nn.Module):
    def __init__(self, config, block_idx: int):
        super().__init__()

        self.config = config
        self.block_idx = block_idx

        in_channel_mult = (1,) + tuple(self.config.channel_mult)
        block_in = self.config.hidden_channels * in_channel_mult[self.block_idx]
        block_out = self.config.hidden_channels * self.config.channel_mult[self.block_idx]

        res_blocks = nn.ModuleList()
        for _ in range(self.config.num_res_blocks):
            res_blocks.append(ResnetBlock(block_in, block_out, dropout_prob=self.config.dropout))
            block_in = block_out
        self.block = res_blocks

        self.downsample = self.block_idx != self.config.num_resolutions - 1

    def forward(self, hidden_states):
        for res_block in self.block:
            hidden_states = res_block(hidden_states)

        if self.downsample:
            hidden_states = F.avg_pool2d(hidden_states, kernel_size=2, stride=2)

        return hidden_states


class UpsamplingBlock(nn.Module):
    def __init__(self, config, block_idx: int):
        super().__init__()

        self.config = config
        self.block_idx = block_idx

        if self.block_idx == self.config.num_resolutions - 1:
            block_in = self.config.hidden_channels * self.config.channel_mult[-1]
        else:
            block_in = self.config.hidden_channels * self.config.channel_mult[self.block_idx + 1]

        block_out = self.config.hidden_channels * self.config.channel_mult[self.block_idx]

        res_blocks = []
        for _ in range(self.config.num_res_blocks):
            res_blocks.append(ResnetBlock(block_in, block_out, dropout_prob=self.config.dropout))
            block_in = block_out
        self.block = nn.ModuleList(res_blocks)

        self.add_upsample = self.block_idx != 0
        if self.add_upsample:
            self.upsample_conv = Conv2dSame(block_out, block_out, kernel_size=3)

    def forward(self, hidden_states):
        for res_block in self.block:
            hidden_states = res_block(hidden_states)

        if self.add_upsample:
            hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
            hidden_states = self.upsample_conv(hidden_states)

        return hidden_states


class Encoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        # downsampling
        self.conv_in = Conv2dSame(self.config.num_channels, self.config.hidden_channels, kernel_size=3, bias=False)

        downsample_blocks = []
        for i_level in range(self.config.num_resolutions):
            downsample_blocks.append(DownsamplingBlock(self.config, block_idx=i_level))
        self.down = nn.ModuleList(downsample_blocks)

        # middle
        mid_channels = self.config.hidden_channels * self.config.channel_mult[-1]
        res_blocks = nn.ModuleList()
        for _ in range(self.config.num_res_blocks):
            res_blocks.append(ResnetBlock(mid_channels, mid_channels, dropout_prob=self.config.dropout))
        self.mid = res_blocks

        # end
        self.norm_out = nn.GroupNorm(num_groups=32, num_channels=mid_channels, eps=1e-6, affine=True)
        self.conv_out = Conv2dSame(mid_channels, self.config.z_channels, kernel_size=1)

    def forward(self, pixel_values):
        # downsampling
        hidden_states = self.conv_in(pixel_values)
        for block in self.down:
            hidden_states = block(hidden_states)

        # middle
        for block in self.mid:
            hidden_states = block(hidden_states)

        # end
        hidden_states = self.norm_out(hidden_states)
        hidden_states = F.silu(hidden_states)
        hidden_states = self.conv_out(hidden_states)
        return hidden_states


class Decoder(nn.Module):
    def __init__(self, config):
        super().__init__()

        self.config = config

        # compute in_channel_mult, block_in and curr_res at lowest res
        block_in = self.config.hidden_channels * self.config.channel_mult[self.config.num_resolutions - 1]
        curr_res = self.config.resolution // 2 ** (self.config.num_resolutions - 1)
        self.z_shape = (1, self.config.z_channels, curr_res, curr_res)

        # z to block_in
        self.conv_in = Conv2dSame(self.config.z_channels, block_in, kernel_size=3)

        # middle
        res_blocks = nn.ModuleList()
        for _ in range(self.config.num_res_blocks):
            res_blocks.append(ResnetBlock(block_in, block_in, dropout_prob=self.config.dropout))
        self.mid = res_blocks

        # upsampling
        upsample_blocks = []
        for i_level in reversed(range(self.config.num_resolutions)):
            upsample_blocks.append(UpsamplingBlock(self.config, block_idx=i_level))
        self.up = nn.ModuleList(list(reversed(upsample_blocks)))  # reverse to get consistent order

        # end
        block_out = self.config.hidden_channels * self.config.channel_mult[0]
        self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_out, eps=1e-6, affine=True)
        self.conv_out = Conv2dSame(block_out, self.config.num_channels, kernel_size=3)

    def forward(self, hidden_states):
        # z to block_in
        hidden_states = self.conv_in(hidden_states)

        # middle
        for block in self.mid:
            hidden_states = block(hidden_states)

        # upsampling
        for block in reversed(self.up):
            hidden_states = block(hidden_states)

        # end
        hidden_states = self.norm_out(hidden_states)
        hidden_states = F.silu(hidden_states)
        hidden_states = self.conv_out(hidden_states)

        return hidden_states


class VectorQuantizer(nn.Module):
    """
    see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py
    Discretization bottleneck part of the VQ-VAE.
    """

    def __init__(self, num_embeddings, embedding_dim, commitment_cost):
        r"""
        Args:
            num_embeddings: number of vectors in the quantized space.
            embedding_dim: dimensionality of the tensors in the quantized space.
                Inputs to the modules must be in this format as well.
            commitment_cost: scalar which controls the weighting of the loss terms
                (see equation 4 in the paper https://arxiv.org/abs/1711.00937 - this variable is Beta).
        """
        super().__init__()

        self.num_embeddings = num_embeddings
        self.embedding_dim = embedding_dim
        self.commitment_cost = commitment_cost

        self.embedding = nn.Embedding(num_embeddings, embedding_dim)
        self.embedding.weight.data.uniform_(-1.0 / num_embeddings, 1.0 / num_embeddings)

    def forward(self, hidden_states, return_loss=False):
        """
        Inputs the output of the encoder network z and maps it to a discrete one-hot vector that is the index of the
        closest embedding vector e_j z (continuous) -> z_q (discrete) z.shape = (batch, channel, height, width)
        quantization pipeline:
            1. get encoder input (B,C,H,W)
            2. flatten input to (B*H*W,C)
        """
        # reshape z -> (batch, height, width, channel) and flatten
        hidden_states = hidden_states.permute(0, 2, 3, 1).contiguous()

        distances = self.compute_distances(hidden_states)
        min_encoding_indices = torch.argmin(distances, axis=1).unsqueeze(1)
        min_encodings = torch.zeros(min_encoding_indices.shape[0], self.num_embeddings).to(hidden_states)
        min_encodings.scatter_(1, min_encoding_indices, 1)

        # get quantized latent vectors
        z_q = torch.matmul(min_encodings, self.embedding.weight).view(hidden_states.shape)

        # reshape to (batch, num_tokens)
        min_encoding_indices = min_encoding_indices.reshape(hidden_states.shape[0], -1)

        # compute loss for embedding
        loss = None
        if return_loss:
            loss = torch.mean((z_q.detach() - hidden_states) ** 2) + self.commitment_cost * torch.mean(
                (z_q - hidden_states.detach()) ** 2
            )
            # preserve gradients
            z_q = hidden_states + (z_q - hidden_states).detach()

        # reshape back to match original input shape
        z_q = z_q.permute(0, 3, 1, 2).contiguous()

        return z_q, min_encoding_indices, loss

    def compute_distances(self, hidden_states):
        # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
        hidden_states_flattended = hidden_states.reshape((-1, self.embedding_dim))
        emb_weights = self.embedding.weight.t()

        inputs_norm_sq = hidden_states_flattended.pow(2.0).sum(dim=1, keepdim=True)
        codebook_t_norm_sq = emb_weights.pow(2.0).sum(dim=0, keepdim=True)
        distances = torch.addmm(
            inputs_norm_sq + codebook_t_norm_sq,
            hidden_states_flattended,
            emb_weights,
            alpha=-2.0,
        )
        return distances

    def get_codebook_entry(self, indices):
        # indices are expected to be of shape (batch, num_tokens)
        # get quantized latent vectors
        if len(indices.shape) == 2:
            batch, num_tokens = indices.shape
            z_q = self.embedding(indices)
            z_q = z_q.reshape(batch, int(math.sqrt(num_tokens)), int(math.sqrt(num_tokens)), -1).permute(0, 3, 1, 2)
        elif len(indices.shape) == 3:
            batch, height, width = indices.shape
            indices = indices.view(batch, -1)
            z_q = self.embedding(indices)
            z_q = z_q.reshape(batch, height, width, -1).permute(0, 3, 1, 2)
        else:
            print(indices.shape)
            raise NotImplementedError
        return z_q

    # adapted from https://github.com/kakaobrain/rq-vae-transformer/blob/main/rqvae/models/rqvae/quantizations.py#L372
    def get_soft_code(self, hidden_states, temp=1.0, stochastic=False):
        hidden_states = hidden_states.permute(0, 2, 3, 1).contiguous()  # (batch, height, width, channel)
        distances = self.compute_distances(hidden_states)  # (batch * height * width, num_embeddings)

        soft_code = F.softmax(-distances / temp, dim=-1)  # (batch * height * width, num_embeddings)
        if stochastic:
            code = torch.multinomial(soft_code, 1)  # (batch * height * width, 1)
        else:
            code = distances.argmin(dim=-1)  # (batch * height * width)

        code = code.reshape(hidden_states.shape[0], -1)  # (batch, height * width)
        batch, num_tokens = code.shape
        soft_code = soft_code.reshape(batch, num_tokens, -1)  # (batch, height * width, num_embeddings)
        return soft_code, code

    def get_code(self, hidden_states):
        # reshape z -> (batch, height, width, channel)
        hidden_states = hidden_states.permute(0, 2, 3, 1).contiguous()
        distances = self.compute_distances(hidden_states)
        indices = torch.argmin(distances, axis=1).unsqueeze(1)
        indices = indices.reshape(hidden_states.shape[0], -1)
        return indices