fujiki's picture
Update app.py
929fc3c
import gradio as gr
import os
import threading
import arrow
import time
import argparse
import logging
from dataclasses import dataclass
import torch
import sentencepiece as spm
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation.streamers import BaseStreamer
from huggingface_hub import hf_hub_download, login
logger = logging.getLogger()
logger.setLevel("INFO")
gr_interface = None
VERSION = "1.0"
@dataclass
class DefaultArgs:
hf_model_name_or_path: str = "cyberagent/open-calm-1b"
spm_model_path: str = None
env: str = "dev"
port: int = 7860
make_public: bool = False
args = DefaultArgs()
def load_model(
model_dir,
):
model = AutoModelForCausalLM.from_pretrained(args.hf_model_name_or_path, device_map="auto", torch_dtype=torch.float32)
if torch.cuda.is_available():
model = model.to("cuda:0")
return model
logging.info("Loading model")
model = load_model(args.hf_model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(args.hf_model_name_or_path)
logging.info("Finished loading model")
class Streamer(BaseStreamer):
def __init__(self, tokenizer):
self.tokenizer = tokenizer
self.num_invoked = 0
self.prompt = ""
self.generated_text = ""
self.ended = False
def put(self, t: torch.Tensor):
d = t.dim()
if d == 1:
pass
elif d == 2:
t = t[0]
else:
raise NotImplementedError
t = [int(x) for x in t.numpy()]
text = self.tokenizer.decode(t, skip_special_tokens=True)
if self.num_invoked == 0:
self.prompt = text
self.num_invoked += 1
return
self.generated_text += text
logging.debug(f"[streamer]: {self.generated_text}")
def end(self):
self.ended = True
def generate(
prompt,
max_new_tokens,
temperature,
repetition_penalty,
do_sample,
no_repeat_ngram_size,
):
log = dict(locals())
logging.debug(log)
print(log)
input_ids = tokenizer(prompt, return_tensors="pt")['input_ids'].to(model.device)
max_possilbe_new_tokens = model.config.max_position_embeddings - len(input_ids.squeeze(0))
max_possilbe_new_tokens = min(max_possilbe_new_tokens, max_new_tokens)
streamer = Streamer(tokenizer=tokenizer)
thr = threading.Thread(target=model.generate, args=(), kwargs=dict(
input_ids=input_ids,
do_sample=do_sample,
temperature=temperature,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
max_new_tokens=max_possilbe_new_tokens,
streamer=streamer,
# max_length=4096,
# top_k=100,
# top_p=0.9,
# num_return_sequences=2,
# num_beams=2,
))
thr.start()
gen_tokens = model.generate(
input_ids=input_ids,
do_sample=do_sample,
temperature=temperature,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
max_new_tokens=max_possilbe_new_tokens,
)
gen = tokenizer.decode(gen_tokens[0], skip_special_tokens=True)
while not streamer.ended:
time.sleep(0.05)
yield streamer.generated_text
# TODO: optimize for final few tokens
gen = streamer.generated_text
log.update(dict(
generation=gen,
version=VERSION,
time=str(arrow.now("+09:00"))))
logging.info(log)
yield gen
def process_feedback(
rating,
prompt,
generation,
max_new_tokens,
temperature,
repetition_penalty,
do_sample,
no_repeat_ngram_size,
):
log = dict(locals())
log.update(dict(
time=str(arrow.now("+09:00")),
version=VERSION,
))
logging.info(log)
if gr_interface:
gr_interface.close(verbose=False)
with gr.Blocks() as gr_interface:
with gr.Row():
gr.Markdown(f"# {args.hf_model_name_or_path.split('/')[-1]} playground")
with gr.Row():
# left panel
with gr.Column(scale=1):
# generation params
with gr.Box():
gr.Markdown("hyper parameters")
# hidden default params
do_sample = gr.Checkbox(True, label="Do Sample", visible=True)
no_repeat_ngram_size = gr.Slider(0, 10, value=5, step=1, label="No Repeat Ngram Size", visible=False)
# visible params
max_new_tokens = gr.Slider(
128,
min(512, model.config.max_position_embeddings),
value=128,
step=128,
label="max tokens",
)
temperature = gr.Slider(
0, 1, value=0.7, step=0.05, label="temperature",
)
repetition_penalty = gr.Slider(
1, 1.5, value=1.2, step=0.05, label="frequency penalty",
)
# grouping params for easier reference
gr_params = [
max_new_tokens,
temperature,
repetition_penalty,
do_sample,
no_repeat_ngram_size,
]
# right panel
with gr.Column(scale=2):
# user input block
with gr.Box():
textbox_prompt = gr.Textbox(
label="入力",
placeholder="AIによって私達の暮らしは、",
interactive=True,
lines=5,
value="AIによって私達の暮らしは、"
)
with gr.Box():
with gr.Row():
btn_stop = gr.Button(value="キャンセル", variant="secondary")
btn_submit = gr.Button(value="実行", variant="primary")
# model output block
with gr.Box():
textbox_generation = gr.Textbox(
label="応答",
lines=5,
value=""
)
# event handling
inputs = [textbox_prompt] + gr_params
click_event = btn_submit.click(generate, inputs, textbox_generation, queue=True)
btn_stop.click(None, None, None, cancels=click_event, queue=False)
gr_interface.queue(max_size=32, concurrency_count=2)
gr_interface.launch(server_port=args.port, share=args.make_public)