fspecii commited on
Commit
49a020a
1 Parent(s): f632b8d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +96 -140
app.py CHANGED
@@ -1,72 +1,48 @@
1
  import argparse
2
  import glob
3
- import os.path
4
 
 
5
  import gradio as gr
6
  import numpy as np
7
- import onnxruntime as rt
 
 
8
  import tqdm
9
- import json
10
- from huggingface_hub import hf_hub_download
11
 
12
  import MIDI
13
- from midi_synthesizer import synthesis
14
  from midi_tokenizer import MIDITokenizer
15
-
 
16
  in_space = os.getenv("SYSTEM") == "spaces"
17
-
18
-
19
- def softmax(x, axis):
20
- x_max = np.amax(x, axis=axis, keepdims=True)
21
- exp_x_shifted = np.exp(x - x_max)
22
- return exp_x_shifted / np.sum(exp_x_shifted, axis=axis, keepdims=True)
23
-
24
-
25
- def sample_top_p_k(probs, p, k):
26
- probs_idx = np.argsort(-probs, axis=-1)
27
- probs_sort = np.take_along_axis(probs, probs_idx, -1)
28
- probs_sum = np.cumsum(probs_sort, axis=-1)
29
- mask = probs_sum - probs_sort > p
30
- probs_sort[mask] = 0.0
31
- mask = np.zeros(probs_sort.shape[-1])
32
- mask[:k] = 1
33
- probs_sort = probs_sort * mask
34
- probs_sort /= np.sum(probs_sort, axis=-1, keepdims=True)
35
- shape = probs_sort.shape
36
- probs_sort_flat = probs_sort.reshape(-1, shape[-1])
37
- probs_idx_flat = probs_idx.reshape(-1, shape[-1])
38
- next_token = np.stack([np.random.choice(idxs, p=pvals) for pvals, idxs in zip(probs_sort_flat, probs_idx_flat)])
39
- next_token = next_token.reshape(*shape[:-1])
40
- return next_token
41
-
42
-
43
- def generate(model, prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20,
44
- disable_patch_change=False, disable_control_change=False, disable_channels=None):
45
  if disable_channels is not None:
46
  disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels]
47
  else:
48
  disable_channels = []
49
  max_token_seq = tokenizer.max_token_seq
50
  if prompt is None:
51
- input_tensor = np.full((1, max_token_seq), tokenizer.pad_id, dtype=np.int64)
52
  input_tensor[0, 0] = tokenizer.bos_id # bos
53
  else:
54
  prompt = prompt[:, :max_token_seq]
55
  if prompt.shape[-1] < max_token_seq:
56
  prompt = np.pad(prompt, ((0, 0), (0, max_token_seq - prompt.shape[-1])),
57
  mode="constant", constant_values=tokenizer.pad_id)
58
- input_tensor = prompt
59
- input_tensor = input_tensor[None, :, :]
60
  cur_len = input_tensor.shape[1]
61
- bar = tqdm.tqdm(desc="generating", total=max_len - cur_len, disable=in_space)
62
- with bar:
63
  while cur_len < max_len:
64
  end = False
65
- hidden = model[0].run(None, {'x': input_tensor})[0][:, -1]
66
- next_token_seq = np.empty((1, 0), dtype=np.int64)
67
  event_name = ""
68
  for i in range(max_token_seq):
69
- mask = np.zeros(tokenizer.vocab_size, dtype=np.int64)
70
  if i == 0:
71
  mask_ids = list(tokenizer.event_ids.values()) + [tokenizer.eos_id]
72
  if disable_patch_change:
@@ -80,9 +56,9 @@ def generate(model, prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20,
80
  if param_name == "channel":
81
  mask_ids = [i for i in mask_ids if i not in disable_channels]
82
  mask[mask_ids] = 1
83
- logits = model[1].run(None, {'x': next_token_seq, "hidden": hidden})[0][:, -1:]
84
- scores = softmax(logits / temp, -1) * mask
85
- sample = sample_top_p_k(scores, top_p, top_k)
86
  if i == 0:
87
  next_token_seq = sample
88
  eid = sample.item()
@@ -91,29 +67,58 @@ def generate(model, prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20,
91
  break
92
  event_name = tokenizer.id_events[eid]
93
  else:
94
- next_token_seq = np.concatenate([next_token_seq, sample], axis=1)
95
  if len(tokenizer.events[event_name]) == i:
96
  break
97
  if next_token_seq.shape[1] < max_token_seq:
98
- next_token_seq = np.pad(next_token_seq, ((0, 0), (0, max_token_seq - next_token_seq.shape[-1])),
99
- mode="constant", constant_values=tokenizer.pad_id)
100
- next_token_seq = next_token_seq[None, :, :]
101
- input_tensor = np.concatenate([input_tensor, next_token_seq], axis=1)
102
  cur_len += 1
103
  bar.update(1)
104
- yield next_token_seq.reshape(-1)
105
  if end:
106
  break
107
 
108
 
109
- def create_msg(name, data):
110
- return {"name": name, "data": data}
111
-
112
-
113
- def run(model_name, tab, instruments, drum_kit, mid, midi_events, gen_events, temp, top_p, top_k, allow_cc):
114
  mid_seq = []
115
- gen_events = int(gen_events)
116
- max_len = gen_events
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117
 
118
  disable_patch_change = False
119
  disable_channels = None
@@ -130,7 +135,7 @@ def run(model_name, tab, instruments, drum_kit, mid, midi_events, gen_events, te
130
  mid.append(tokenizer.event2tokens(["patch_change", 0, 0, i, c, p]))
131
  mid_seq = mid
132
  mid = np.asarray(mid, dtype=np.int64)
133
- if len(instruments) > 0:
134
  disable_patch_change = True
135
  disable_channels = [i for i in range(16) if i not in patches]
136
  elif mid is not None:
@@ -139,67 +144,41 @@ def run(model_name, tab, instruments, drum_kit, mid, midi_events, gen_events, te
139
  mid = mid[:int(midi_events)]
140
  max_len += len(mid)
141
  for token_seq in mid:
142
- mid_seq.append(token_seq.tolist())
143
- init_msgs = [create_msg("visualizer_clear", None)]
144
- for tokens in mid_seq:
145
- init_msgs.append(create_msg("visualizer_append", tokenizer.tokens2event(tokens)))
146
- yield mid_seq, None, None, init_msgs
147
- model = models[model_name]
148
- generator = generate(model, mid, max_len=max_len, temp=temp, top_p=top_p, top_k=top_k,
149
  disable_patch_change=disable_patch_change, disable_control_change=not allow_cc,
150
- disable_channels=disable_channels)
151
- for i, token_seq in enumerate(generator):
152
- token_seq = token_seq.tolist()
153
  mid_seq.append(token_seq)
154
- event = tokenizer.tokens2event(token_seq)
155
- yield mid_seq, None, None, [create_msg("visualizer_append", event), create_msg("progress", [i + 1, gen_events])]
156
  mid = tokenizer.detokenize(mid_seq)
157
  with open(f"output.mid", 'wb') as f:
158
  f.write(MIDI.score2midi(mid))
159
  audio = synthesis(MIDI.score2opus(mid), soundfont_path)
160
- yield mid_seq, "output.mid", (44100, audio), [create_msg("visualizer_end", None)]
161
 
162
 
163
  def cancel_run(mid_seq):
164
- if mid_seq is None:
165
- return None, None
166
  mid = tokenizer.detokenize(mid_seq)
167
  with open(f"output.mid", 'wb') as f:
168
  f.write(MIDI.score2midi(mid))
169
  audio = synthesis(MIDI.score2opus(mid), soundfont_path)
170
- return "output.mid", (44100, audio), [create_msg("visualizer_end", None)]
171
-
172
-
173
- def load_javascript(dir="javascript"):
174
- scripts_list = glob.glob(f"{dir}/*.js")
175
- javascript = ""
176
- for path in scripts_list:
177
- with open(path, "r", encoding="utf8") as jsfile:
178
- javascript += f"\n<!-- {path} --><script>{jsfile.read()}</script>"
179
- template_response_ori = gr.routes.templates.TemplateResponse
180
 
181
- def template_response(*args, **kwargs):
182
- res = template_response_ori(*args, **kwargs)
183
- res.body = res.body.replace(
184
- b'</head>', f'{javascript}</head>'.encode("utf8"))
185
- res.init_headers()
186
- return res
187
 
188
- gr.routes.templates.TemplateResponse = template_response
 
 
 
 
 
189
 
190
 
191
- class JSMsgReceiver(gr.HTML):
192
-
193
- def __init__(self, **kwargs):
194
- super().__init__(elem_id="msg_receiver", visible=False, **kwargs)
195
-
196
- def postprocess(self, y):
197
- if y:
198
- y = f"<p>{json.dumps(y)}</p>"
199
- return super().postprocess(y)
200
-
201
- def get_block_name(self) -> str:
202
- return "html"
203
 
204
 
205
  number2drum_kits = {-1: "None", 0: "Standard", 8: "Room", 16: "Power", 24: "Electric", 25: "TR-808", 32: "Jazz",
@@ -209,37 +188,16 @@ drum_kits2number = {v: k for k, v in number2drum_kits.items()}
209
 
210
  if __name__ == "__main__":
211
  parser = argparse.ArgumentParser()
212
- parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
213
  parser.add_argument("--port", type=int, default=7860, help="gradio server port")
214
- parser.add_argument("--max-gen", type=int, default=1024, help="max")
215
- opt = parser.parse_args()
216
  soundfont_path = hf_hub_download(repo_id="skytnt/midi-model", filename="soundfont.sf2")
217
- models_info = {"generic pretrain model": ["skytnt/midi-model", ""],
218
- "j-pop finetune model": ["skytnt/midi-model-ft", "jpop/"],
219
- "touhou finetune model": ["skytnt/midi-model-ft", "touhou/"]}
220
- models = {}
221
  tokenizer = MIDITokenizer()
222
- providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
223
- for name, (repo_id, path) in models_info.items():
224
- model_base_path = hf_hub_download(repo_id=repo_id, filename=f"{path}onnx/model_base.onnx")
225
- model_token_path = hf_hub_download(repo_id=repo_id, filename=f"{path}onnx/model_token.onnx")
226
- model_base = rt.InferenceSession(model_base_path, providers=providers)
227
- model_token = rt.InferenceSession(model_token_path, providers=providers)
228
- models[name] = [model_base, model_token]
229
 
230
- load_javascript()
231
  app = gr.Blocks()
232
  with app:
233
- gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Midi Composer</h1>")
234
- gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=skytnt.midi-composer&style=flat)\n\n"
235
- "Midi event transformer for music generation\n\n"
236
- "Demo for [SkyTNT/midi-model](https://github.com/SkyTNT/midi-model)\n\n"
237
- "[Open In Colab]"
238
- "(https://colab.research.google.com/github/SkyTNT/midi-model/blob/main/demo.ipynb)"
239
- " for faster running and longer generation"
240
- )
241
- js_msg = JSMsgReceiver()
242
- with gr.Accordion(label="Model option", open=True):
243
  load_model_path_btn = gr.Button("Get Models")
244
  model_path_input = gr.Dropdown(label="model")
245
  load_model_path_btn.click(get_model_path, [], model_path_input)
@@ -271,28 +229,26 @@ if __name__ == "__main__":
271
  input_midi_events = gr.Slider(label="use first n midi events as prompt", minimum=1, maximum=512,
272
  step=1,
273
  value=128)
274
- example2 = gr.Examples([[file, 128] for file in glob.glob("example/*.mid")],
275
- [input_midi, input_midi_events])
276
 
277
  tab1.select(lambda: 0, None, tab_select, queue=False)
278
  tab2.select(lambda: 1, None, tab_select, queue=False)
279
- input_gen_events = gr.Slider(label="generate n midi events", minimum=1, maximum=opt.max_gen,
280
- step=1, value=opt.max_gen // 2)
281
  with gr.Accordion("options", open=False):
282
  input_temp = gr.Slider(label="temperature", minimum=0.1, maximum=1.2, step=0.01, value=1)
283
  input_top_p = gr.Slider(label="top p", minimum=0.1, maximum=1, step=0.01, value=0.98)
284
  input_top_k = gr.Slider(label="top k", minimum=1, maximum=20, step=1, value=12)
285
  input_allow_cc = gr.Checkbox(label="allow midi cc event", value=True)
 
286
  example3 = gr.Examples([[1, 0.98, 12], [1.2, 0.95, 8]], [input_temp, input_top_p, input_top_k])
287
  run_btn = gr.Button("generate", variant="primary")
288
  stop_btn = gr.Button("stop and output")
289
  output_midi_seq = gr.Variable()
290
- output_midi_visualizer = gr.HTML(elem_id="midi_visualizer_container")
291
- output_audio = gr.Audio(label="output audio", format="mp3", elem_id="midi_audio")
292
  output_midi = gr.File(label="output midi", file_types=[".mid"])
293
- run_event = run_btn.click(run, [input_model, tab_select, input_instruments, input_drum_kit, input_midi,
294
- input_midi_events, input_gen_events, input_temp, input_top_p, input_top_k,
295
- input_allow_cc],
296
- [output_midi_seq, output_midi, output_audio, js_msg])
297
- stop_btn.click(cancel_run, output_midi_seq, [output_midi, output_audio, js_msg], cancels=run_event, queue=False)
298
- app.queue(2).launch(server_port=opt.port, share=opt.share, inbrowser=True)
 
 
1
  import argparse
2
  import glob
 
3
 
4
+ import PIL
5
  import gradio as gr
6
  import numpy as np
7
+ import torch
8
+
9
+ import torch.nn.functional as F
10
  import tqdm
 
 
11
 
12
  import MIDI
13
+ from midi_model import MIDIModel
14
  from midi_tokenizer import MIDITokenizer
15
+ from midi_synthesizer import synthesis
16
+ from huggingface_hub import hf_hub_download
17
  in_space = os.getenv("SYSTEM") == "spaces"
18
+ @torch.inference_mode()
19
+ def generate(prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20,
20
+ disable_patch_change=False, disable_control_change=False, disable_channels=None, amp=True):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  if disable_channels is not None:
22
  disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels]
23
  else:
24
  disable_channels = []
25
  max_token_seq = tokenizer.max_token_seq
26
  if prompt is None:
27
+ input_tensor = torch.full((1, max_token_seq), tokenizer.pad_id, dtype=torch.long, device=model.device)
28
  input_tensor[0, 0] = tokenizer.bos_id # bos
29
  else:
30
  prompt = prompt[:, :max_token_seq]
31
  if prompt.shape[-1] < max_token_seq:
32
  prompt = np.pad(prompt, ((0, 0), (0, max_token_seq - prompt.shape[-1])),
33
  mode="constant", constant_values=tokenizer.pad_id)
34
+ input_tensor = torch.from_numpy(prompt).to(dtype=torch.long, device=model.device)
35
+ input_tensor = input_tensor.unsqueeze(0)
36
  cur_len = input_tensor.shape[1]
37
+ bar = tqdm.tqdm(desc="generating", total=max_len - cur_len)
38
+ with bar, torch.cuda.amp.autocast(enabled=amp):
39
  while cur_len < max_len:
40
  end = False
41
+ hidden = model.forward(input_tensor)[0, -1].unsqueeze(0)
42
+ next_token_seq = None
43
  event_name = ""
44
  for i in range(max_token_seq):
45
+ mask = torch.zeros(tokenizer.vocab_size, dtype=torch.int64, device=model.device)
46
  if i == 0:
47
  mask_ids = list(tokenizer.event_ids.values()) + [tokenizer.eos_id]
48
  if disable_patch_change:
 
56
  if param_name == "channel":
57
  mask_ids = [i for i in mask_ids if i not in disable_channels]
58
  mask[mask_ids] = 1
59
+ logits = model.forward_token(hidden, next_token_seq)[:, -1:]
60
+ scores = torch.softmax(logits / temp, dim=-1) * mask
61
+ sample = model.sample_top_p_k(scores, top_p, top_k)
62
  if i == 0:
63
  next_token_seq = sample
64
  eid = sample.item()
 
67
  break
68
  event_name = tokenizer.id_events[eid]
69
  else:
70
+ next_token_seq = torch.cat([next_token_seq, sample], dim=1)
71
  if len(tokenizer.events[event_name]) == i:
72
  break
73
  if next_token_seq.shape[1] < max_token_seq:
74
+ next_token_seq = F.pad(next_token_seq, (0, max_token_seq - next_token_seq.shape[1]),
75
+ "constant", value=tokenizer.pad_id)
76
+ next_token_seq = next_token_seq.unsqueeze(1)
77
+ input_tensor = torch.cat([input_tensor, next_token_seq], dim=1)
78
  cur_len += 1
79
  bar.update(1)
80
+ yield next_token_seq.reshape(-1).cpu().numpy()
81
  if end:
82
  break
83
 
84
 
85
+ def run(tab, instruments, drum_kit, mid, midi_events, gen_events, temp, top_p, top_k, allow_cc, amp):
 
 
 
 
86
  mid_seq = []
87
+ max_len = int(gen_events)
88
+ img_len = 1024
89
+ img = np.full((128 * 2, img_len, 3), 255, dtype=np.uint8)
90
+ state = {"t1": 0, "t": 0, "cur_pos": 0}
91
+ rand = np.random.RandomState(0)
92
+ colors = {(i, j): rand.randint(0, 200, 3) for i in range(128) for j in range(16)}
93
+
94
+ def draw_event(tokens):
95
+ if tokens[0] in tokenizer.id_events:
96
+ name = tokenizer.id_events[tokens[0]]
97
+ if len(tokens) <= len(tokenizer.events[name]):
98
+ return
99
+ params = tokens[1:]
100
+ params = [params[i] - tokenizer.parameter_ids[p][0] for i, p in enumerate(tokenizer.events[name])]
101
+ if not all([0 <= params[i] < tokenizer.event_parameters[p] for i, p in enumerate(tokenizer.events[name])]):
102
+ return
103
+ event = [name] + params
104
+ state["t1"] += event[1]
105
+ t = state["t1"] * 16 + event[2]
106
+ state["t"] = t
107
+ if name == "note":
108
+ tr, d, c, p = event[3:7]
109
+ shift = t + d - (state["cur_pos"] + img_len)
110
+ if shift > 0:
111
+ img[:, :-shift] = img[:, shift:]
112
+ img[:, -shift:] = 255
113
+ state["cur_pos"] += shift
114
+ t = t - state["cur_pos"]
115
+ img[p * 2:(p + 1) * 2, t: t + d] = colors[(tr, c)]
116
+
117
+ def get_img():
118
+ t = state["t"] - state["cur_pos"]
119
+ img_new = img.copy()
120
+ img_new[:, t: t + 2] = 0
121
+ return PIL.Image.fromarray(np.flip(img_new, 0))
122
 
123
  disable_patch_change = False
124
  disable_channels = None
 
135
  mid.append(tokenizer.event2tokens(["patch_change", 0, 0, i, c, p]))
136
  mid_seq = mid
137
  mid = np.asarray(mid, dtype=np.int64)
138
+ if len(instruments) > 0 or drum_kit != "None":
139
  disable_patch_change = True
140
  disable_channels = [i for i in range(16) if i not in patches]
141
  elif mid is not None:
 
144
  mid = mid[:int(midi_events)]
145
  max_len += len(mid)
146
  for token_seq in mid:
147
+ mid_seq.append(token_seq)
148
+ draw_event(token_seq)
149
+ generator = generate(mid, max_len=max_len, temp=temp, top_p=top_p, top_k=top_k,
 
 
 
 
150
  disable_patch_change=disable_patch_change, disable_control_change=not allow_cc,
151
+ disable_channels=disable_channels, amp=amp)
152
+ for token_seq in generator:
 
153
  mid_seq.append(token_seq)
154
+ draw_event(token_seq)
155
+ yield mid_seq, get_img(), None, None
156
  mid = tokenizer.detokenize(mid_seq)
157
  with open(f"output.mid", 'wb') as f:
158
  f.write(MIDI.score2midi(mid))
159
  audio = synthesis(MIDI.score2opus(mid), soundfont_path)
160
+ yield mid_seq, get_img(), "output.mid", (44100, audio)
161
 
162
 
163
  def cancel_run(mid_seq):
 
 
164
  mid = tokenizer.detokenize(mid_seq)
165
  with open(f"output.mid", 'wb') as f:
166
  f.write(MIDI.score2midi(mid))
167
  audio = synthesis(MIDI.score2opus(mid), soundfont_path)
168
+ return "output.mid", (44100, audio)
 
 
 
 
 
 
 
 
 
169
 
 
 
 
 
 
 
170
 
171
+ def load_model(path):
172
+ ckpt = torch.load(path, map_location="cpu")
173
+ state_dict = ckpt.get("state_dict", ckpt)
174
+ model.load_state_dict(state_dict, strict=False)
175
+ model.eval()
176
+ return "success"
177
 
178
 
179
+ def get_model_path():
180
+ model_paths = sorted(glob.glob("**/*.ckpt", recursive=True))
181
+ return model_path_input.update(choices=model_paths)
 
 
 
 
 
 
 
 
 
182
 
183
 
184
  number2drum_kits = {-1: "None", 0: "Standard", 8: "Room", 16: "Power", 24: "Electric", 25: "TR-808", 32: "Jazz",
 
188
 
189
  if __name__ == "__main__":
190
  parser = argparse.ArgumentParser()
 
191
  parser.add_argument("--port", type=int, default=7860, help="gradio server port")
192
+ parser.add_argument("--device", type=str, default="cuda", help="device to run model")
 
193
  soundfont_path = hf_hub_download(repo_id="skytnt/midi-model", filename="soundfont.sf2")
194
+ opt = parser.parse_args()
 
 
 
195
  tokenizer = MIDITokenizer()
196
+ model = MIDIModel(tokenizer).to(device=opt.device)
 
 
 
 
 
 
197
 
 
198
  app = gr.Blocks()
199
  with app:
200
+ with gr.Accordion(label="Model option", open=False):
 
 
 
 
 
 
 
 
 
201
  load_model_path_btn = gr.Button("Get Models")
202
  model_path_input = gr.Dropdown(label="model")
203
  load_model_path_btn.click(get_model_path, [], model_path_input)
 
229
  input_midi_events = gr.Slider(label="use first n midi events as prompt", minimum=1, maximum=512,
230
  step=1,
231
  value=128)
 
 
232
 
233
  tab1.select(lambda: 0, None, tab_select, queue=False)
234
  tab2.select(lambda: 1, None, tab_select, queue=False)
235
+ input_gen_events = gr.Slider(label="generate n midi events", minimum=1, maximum=4096, step=1, value=512)
 
236
  with gr.Accordion("options", open=False):
237
  input_temp = gr.Slider(label="temperature", minimum=0.1, maximum=1.2, step=0.01, value=1)
238
  input_top_p = gr.Slider(label="top p", minimum=0.1, maximum=1, step=0.01, value=0.98)
239
  input_top_k = gr.Slider(label="top k", minimum=1, maximum=20, step=1, value=12)
240
  input_allow_cc = gr.Checkbox(label="allow midi cc event", value=True)
241
+ input_amp = gr.Checkbox(label="enable amp", value=True)
242
  example3 = gr.Examples([[1, 0.98, 12], [1.2, 0.95, 8]], [input_temp, input_top_p, input_top_k])
243
  run_btn = gr.Button("generate", variant="primary")
244
  stop_btn = gr.Button("stop and output")
245
  output_midi_seq = gr.Variable()
246
+ output_midi_img = gr.Image(label="output image")
 
247
  output_midi = gr.File(label="output midi", file_types=[".mid"])
248
+ output_audio = gr.Audio(label="output audio", format="mp3")
249
+ run_event = run_btn.click(run, [tab_select, input_instruments, input_drum_kit, input_midi, input_midi_events,
250
+ input_gen_events, input_temp, input_top_p, input_top_k,
251
+ input_allow_cc, input_amp],
252
+ [output_midi_seq, output_midi_img, output_midi, output_audio])
253
+ stop_btn.click(cancel_run, output_midi_seq, [output_midi, output_audio], cancels=run_event, queue=False)
254
+ app.queue(1).launch(server_port=opt.port)