Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import torch
|
|
4 |
from transformers import pipeline
|
5 |
import datetime
|
6 |
from rapidfuzz import process, fuzz
|
|
|
7 |
|
8 |
# Load the CSV file
|
9 |
df = pd.read_csv("anomalies.csv", quotechar='"')
|
@@ -14,29 +15,39 @@ df['real'] = df['real'].apply(lambda x: f"{x:.2f}")
|
|
14 |
# Fill NaN values and convert all columns to strings
|
15 |
df = df.fillna('').astype(str)
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
# Apply fuzzy matching on the 'ds' (date) and 'Group' columns
|
20 |
-
date_matches = process.extract(date_str, df['ds'], scorer=fuzz.token_sort_ratio, limit=None)
|
21 |
-
group_matches = process.extract(group_keyword, df['Group'], scorer=fuzz.token_sort_ratio, limit=None)
|
22 |
|
23 |
-
|
24 |
-
date_indices = {match[2] for match in date_matches if match[1] >= threshold}
|
25 |
-
group_indices = {match[2] for match in group_matches if match[1] >= threshold}
|
26 |
-
common_indices = list(date_indices & group_indices)
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
# Function to generate a response using the TAPAS model
|
31 |
def response(user_question, df):
|
32 |
a = datetime.datetime.now()
|
33 |
|
34 |
-
#
|
35 |
-
|
36 |
-
group_keyword = "IPVA"
|
37 |
-
|
38 |
-
# Filter the DataFrame by date and group
|
39 |
-
subset_df = filter_dataframe(df, date_str, group_keyword)
|
40 |
|
41 |
# Check if the DataFrame is empty
|
42 |
if subset_df.empty:
|
|
|
4 |
from transformers import pipeline
|
5 |
import datetime
|
6 |
from rapidfuzz import process, fuzz
|
7 |
+
from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS
|
8 |
|
9 |
# Load the CSV file
|
10 |
df = pd.read_csv("anomalies.csv", quotechar='"')
|
|
|
15 |
# Fill NaN values and convert all columns to strings
|
16 |
df = df.fillna('').astype(str)
|
17 |
|
18 |
+
# Filter 'real' higher than 10 Million
|
19 |
+
df= df[df['real'] >= 1000000.]
|
|
|
|
|
|
|
20 |
|
21 |
+
print(df)
|
|
|
|
|
|
|
22 |
|
23 |
+
# Function to remove stopwords
|
24 |
+
def remove_stopwords(text, stopwords=ENGLISH_STOP_WORDS):
|
25 |
+
return ' '.join([word for word in text.split() if word.lower() not in stopwords])
|
26 |
+
|
27 |
+
# Function to filter DataFrame by checking if any of the user question words are in the columns
|
28 |
+
def filter_dataframe(df, user_question, threshold=80):
|
29 |
+
user_question = remove_stopwords(user_question) # Remove stopwords
|
30 |
+
question_words = user_question.split()
|
31 |
+
|
32 |
+
mask = pd.Series([False] * len(df))
|
33 |
+
|
34 |
+
for column in df.columns:
|
35 |
+
for word in question_words:
|
36 |
+
# Apply RapidFuzz fuzzy matching on the column
|
37 |
+
matches = process.extract(word, df[column], scorer=fuzz.token_sort_ratio, limit=None)
|
38 |
+
match_indices = [match[2] for match in matches if match[1] >= threshold]
|
39 |
+
mask.iloc[match_indices] = True
|
40 |
+
|
41 |
+
filtered_df = df[mask]
|
42 |
+
|
43 |
+
return filtered_df
|
44 |
|
45 |
# Function to generate a response using the TAPAS model
|
46 |
def response(user_question, df):
|
47 |
a = datetime.datetime.now()
|
48 |
|
49 |
+
# Filter the DataFrame dynamically by user question
|
50 |
+
subset_df = filter_dataframe(df, user_question)
|
|
|
|
|
|
|
|
|
51 |
|
52 |
# Check if the DataFrame is empty
|
53 |
if subset_df.empty:
|