File size: 3,399 Bytes
c8f24dd
9b5b26a
 
 
c19d193
1f6beae
 
 
e89c595
6aae614
9b5b26a
 
 
1f6beae
6c99dee
1f6beae
 
c8f24dd
9b5b26a
1f6beae
c8f24dd
6c99dee
1f6beae
9b5b26a
1f6beae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e89c595
 
 
1f6beae
e89c595
 
 
 
6c99dee
1f6beae
 
 
 
 
 
 
6c99dee
1f6beae
9b5b26a
c8f24dd
9b5b26a
 
c8f24dd
9b5b26a
c8f24dd
9b5b26a
 
c8f24dd
9b5b26a
c8f24dd
9b5b26a
 
 
 
8c01ffb
c8f24dd
6aae614
ae7a494
c8f24dd
 
 
 
 
 
 
 
13d500a
8c01ffb
c8f24dd
 
 
 
861422e
 
e89c595
8c01ffb
8fe992b
c8f24dd
8c01ffb
 
 
 
c8f24dd
 
861422e
8fe992b
 
c8f24dd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
import io
import base64
import schemdraw
from schemdraw import flow
from tools.final_answer import FinalAnswerTool
from Gradio_UI import GradioUI

@tool
def text_to_flowchart(steps_text: str) -> str:
    """
    Generates a flowchart diagram from pre-processed text that lists sequential process steps.
    The input should be a text with each step on a new line (optionally prefixed by bullet markers).

    Args:
        steps_text: A string containing the process steps.

    Returns:
        A data URL for a PNG image of the generated flowchart.
    """
    # Parse steps from the input text
    parsed_steps = []
    for line in steps_text.splitlines():
        line = line.strip()
        if line.startswith(("-", "*", "•")):
            line = line[1:].strip()
        elif line and line[0].isdigit():
            dot_index = line.find('.')
            if dot_index != -1:
                line = line[dot_index+1:].strip()
        if line:
            parsed_steps.append(line)
    if not parsed_steps:
        parsed_steps = ["No steps provided."]
    
    # Create the flowchart using SchemDraw's flow module
    d = schemdraw.Drawing(unit=0.5, fontsize=10)
    d += flow.Terminal().label("Start")
    for step in parsed_steps:
        d += flow.Arrow()
        d += flow.Process().label(step)
    d += flow.Arrow()
    d += flow.Terminal().label("End")
    
    # Render diagram to PNG and encode as a data URL
    buf = io.BytesIO()
    d.draw()
    d.fig.savefig(buf, format='png', bbox_inches='tight')
    buf.seek(0)
    encoded_image = base64.b64encode(buf.getvalue()).decode('utf-8')
    data_url = f"data:image/png;base64,{encoded_image}"
    
    return data_url


@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"


final_answer = FinalAnswerTool()

# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' 

model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)


# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)

with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)
    
agent = CodeAgent(
    model=model,
    tools=[final_answer], ## add your tools here (don't remove final answer)
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates
)


GradioUI(agent).launch()