Updated API
Browse files- requirements.txt +2 -1
- tasks/audio.py +8 -12
- tasks/image.py +148 -8
requirements.txt
CHANGED
@@ -6,4 +6,5 @@ scikit-learn>=1.0.2
|
|
6 |
pydantic>=1.10.0
|
7 |
python-dotenv>=1.0.0
|
8 |
gradio>=4.0.0
|
9 |
-
requests>=2.31.0
|
|
|
|
6 |
pydantic>=1.10.0
|
7 |
python-dotenv>=1.0.0
|
8 |
gradio>=4.0.0
|
9 |
+
requests>=2.31.0
|
10 |
+
librosa==0.10.2.post1
|
tasks/audio.py
CHANGED
@@ -3,16 +3,21 @@ from datetime import datetime
|
|
3 |
from datasets import load_dataset
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
import random
|
|
|
6 |
|
7 |
from .utils.evaluation import AudioEvaluationRequest
|
8 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
9 |
|
|
|
|
|
|
|
10 |
router = APIRouter()
|
11 |
|
12 |
DESCRIPTION = "Random Baseline"
|
13 |
ROUTE = "/audio"
|
14 |
|
15 |
|
|
|
16 |
@router.post(ROUTE, tags=["Audio Task"],
|
17 |
description=DESCRIPTION)
|
18 |
async def evaluate_audio(request: AudioEvaluationRequest):
|
@@ -31,19 +36,10 @@ async def evaluate_audio(request: AudioEvaluationRequest):
|
|
31 |
"chainsaw": 0,
|
32 |
"environment": 1
|
33 |
}
|
34 |
-
|
35 |
-
try:
|
36 |
-
from huggingface_hub import login
|
37 |
-
login()
|
38 |
-
except:
|
39 |
-
pass
|
40 |
-
|
41 |
# Load and prepare the dataset
|
42 |
-
dataset
|
43 |
-
|
44 |
-
|
45 |
-
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
46 |
-
|
47 |
# Split dataset
|
48 |
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
49 |
test_dataset = train_test["test"]
|
|
|
3 |
from datasets import load_dataset
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
import random
|
6 |
+
import os
|
7 |
|
8 |
from .utils.evaluation import AudioEvaluationRequest
|
9 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
10 |
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
load_dotenv()
|
13 |
+
|
14 |
router = APIRouter()
|
15 |
|
16 |
DESCRIPTION = "Random Baseline"
|
17 |
ROUTE = "/audio"
|
18 |
|
19 |
|
20 |
+
|
21 |
@router.post(ROUTE, tags=["Audio Task"],
|
22 |
description=DESCRIPTION)
|
23 |
async def evaluate_audio(request: AudioEvaluationRequest):
|
|
|
36 |
"chainsaw": 0,
|
37 |
"environment": 1
|
38 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
# Load and prepare the dataset
|
40 |
+
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
|
41 |
+
dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN"))
|
42 |
+
|
|
|
|
|
43 |
# Split dataset
|
44 |
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
45 |
test_dataset = train_test["test"]
|
tasks/image.py
CHANGED
@@ -1,32 +1,172 @@
|
|
1 |
from fastapi import APIRouter
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from .utils.evaluation import ImageEvaluationRequest
|
3 |
-
from .utils.emissions import get_space_info
|
|
|
|
|
|
|
4 |
|
5 |
router = APIRouter()
|
6 |
|
7 |
DESCRIPTION = "Random Baseline"
|
8 |
ROUTE = "/image"
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
@router.post(ROUTE, tags=["Image Task"],
|
11 |
description=DESCRIPTION)
|
12 |
async def evaluate_image(request: ImageEvaluationRequest):
|
13 |
"""
|
14 |
-
Evaluate image classification.
|
15 |
|
16 |
Current Model: Random Baseline
|
17 |
-
- Makes random predictions
|
18 |
- Used as a baseline for comparison
|
|
|
|
|
|
|
|
|
19 |
"""
|
|
|
20 |
username, space_url = get_space_info()
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
"username": username,
|
24 |
"space_url": space_url,
|
25 |
-
"
|
26 |
"model_description": DESCRIPTION,
|
27 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
"dataset_name": request.dataset_name,
|
29 |
"test_size": request.test_size,
|
30 |
"test_seed": request.test_seed
|
31 |
}
|
32 |
-
}
|
|
|
|
|
|
1 |
from fastapi import APIRouter
|
2 |
+
from datetime import datetime
|
3 |
+
from datasets import load_dataset
|
4 |
+
import numpy as np
|
5 |
+
from sklearn.metrics import accuracy_score
|
6 |
+
import random
|
7 |
+
import os
|
8 |
+
|
9 |
from .utils.evaluation import ImageEvaluationRequest
|
10 |
+
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
11 |
+
|
12 |
+
from dotenv import load_dotenv
|
13 |
+
load_dotenv()
|
14 |
|
15 |
router = APIRouter()
|
16 |
|
17 |
DESCRIPTION = "Random Baseline"
|
18 |
ROUTE = "/image"
|
19 |
|
20 |
+
def parse_boxes(annotation_string):
|
21 |
+
"""Parse multiple boxes from a single annotation string.
|
22 |
+
Each box has 5 values: class_id, x_center, y_center, width, height"""
|
23 |
+
values = [float(x) for x in annotation_string.strip().split()]
|
24 |
+
boxes = []
|
25 |
+
# Each box has 5 values
|
26 |
+
for i in range(0, len(values), 5):
|
27 |
+
if i + 5 <= len(values):
|
28 |
+
# Skip class_id (first value) and take the next 4 values
|
29 |
+
box = values[i+1:i+5]
|
30 |
+
boxes.append(box)
|
31 |
+
return boxes
|
32 |
+
|
33 |
+
def compute_iou(box1, box2):
|
34 |
+
"""Compute Intersection over Union (IoU) between two YOLO format boxes."""
|
35 |
+
# Convert YOLO format (x_center, y_center, width, height) to corners
|
36 |
+
def yolo_to_corners(box):
|
37 |
+
x_center, y_center, width, height = box
|
38 |
+
x1 = x_center - width/2
|
39 |
+
y1 = y_center - height/2
|
40 |
+
x2 = x_center + width/2
|
41 |
+
y2 = y_center + height/2
|
42 |
+
return np.array([x1, y1, x2, y2])
|
43 |
+
|
44 |
+
box1_corners = yolo_to_corners(box1)
|
45 |
+
box2_corners = yolo_to_corners(box2)
|
46 |
+
|
47 |
+
# Calculate intersection
|
48 |
+
x1 = max(box1_corners[0], box2_corners[0])
|
49 |
+
y1 = max(box1_corners[1], box2_corners[1])
|
50 |
+
x2 = min(box1_corners[2], box2_corners[2])
|
51 |
+
y2 = min(box1_corners[3], box2_corners[3])
|
52 |
+
|
53 |
+
intersection = max(0, x2 - x1) * max(0, y2 - y1)
|
54 |
+
|
55 |
+
# Calculate union
|
56 |
+
box1_area = (box1_corners[2] - box1_corners[0]) * (box1_corners[3] - box1_corners[1])
|
57 |
+
box2_area = (box2_corners[2] - box2_corners[0]) * (box2_corners[3] - box2_corners[1])
|
58 |
+
union = box1_area + box2_area - intersection
|
59 |
+
|
60 |
+
return intersection / (union + 1e-6)
|
61 |
+
|
62 |
+
def compute_max_iou(true_boxes, pred_box):
|
63 |
+
"""Compute maximum IoU between a predicted box and all true boxes"""
|
64 |
+
max_iou = 0
|
65 |
+
for true_box in true_boxes:
|
66 |
+
iou = compute_iou(true_box, pred_box)
|
67 |
+
max_iou = max(max_iou, iou)
|
68 |
+
return max_iou
|
69 |
+
|
70 |
@router.post(ROUTE, tags=["Image Task"],
|
71 |
description=DESCRIPTION)
|
72 |
async def evaluate_image(request: ImageEvaluationRequest):
|
73 |
"""
|
74 |
+
Evaluate image classification and object detection for forest fire smoke.
|
75 |
|
76 |
Current Model: Random Baseline
|
77 |
+
- Makes random predictions for both classification and bounding boxes
|
78 |
- Used as a baseline for comparison
|
79 |
+
|
80 |
+
Metrics:
|
81 |
+
- Classification accuracy: Whether an image contains smoke or not
|
82 |
+
- Object Detection accuracy: IoU (Intersection over Union) for smoke bounding boxes
|
83 |
"""
|
84 |
+
# Get space info
|
85 |
username, space_url = get_space_info()
|
86 |
+
|
87 |
+
# Load and prepare the dataset
|
88 |
+
dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))
|
89 |
+
|
90 |
+
# Split dataset
|
91 |
+
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
92 |
+
test_dataset = train_test["test"]
|
93 |
+
|
94 |
+
# Start tracking emissions
|
95 |
+
tracker.start()
|
96 |
+
tracker.start_task("inference")
|
97 |
+
|
98 |
+
#--------------------------------------------------------------------------------------------
|
99 |
+
# YOUR MODEL INFERENCE CODE HERE
|
100 |
+
# Update the code below to replace the random baseline with your model inference
|
101 |
+
#--------------------------------------------------------------------------------------------
|
102 |
+
|
103 |
+
predictions = []
|
104 |
+
true_labels = []
|
105 |
+
pred_boxes = []
|
106 |
+
true_boxes_list = [] # List of lists, each inner list contains boxes for one image
|
107 |
+
|
108 |
+
for example in test_dataset:
|
109 |
+
# Parse true annotation (YOLO format: class_id x_center y_center width height)
|
110 |
+
annotation = example.get("annotations", "").strip()
|
111 |
+
has_smoke = len(annotation) > 0
|
112 |
+
true_labels.append(int(has_smoke))
|
113 |
+
|
114 |
+
# Make random classification prediction
|
115 |
+
pred_has_smoke = random.random() > 0.5
|
116 |
+
predictions.append(int(pred_has_smoke))
|
117 |
+
|
118 |
+
# If there's a true box, parse it and make random box prediction
|
119 |
+
if has_smoke:
|
120 |
+
# Parse all true boxes from the annotation
|
121 |
+
image_true_boxes = parse_boxes(annotation)
|
122 |
+
true_boxes_list.append(image_true_boxes)
|
123 |
+
|
124 |
+
# For baseline, make one random box prediction per image
|
125 |
+
# In a real model, you might want to predict multiple boxes
|
126 |
+
random_box = [
|
127 |
+
random.random(), # x_center
|
128 |
+
random.random(), # y_center
|
129 |
+
random.random() * 0.5, # width (max 0.5)
|
130 |
+
random.random() * 0.5 # height (max 0.5)
|
131 |
+
]
|
132 |
+
pred_boxes.append(random_box)
|
133 |
+
|
134 |
+
#--------------------------------------------------------------------------------------------
|
135 |
+
# YOUR MODEL INFERENCE STOPS HERE
|
136 |
+
#--------------------------------------------------------------------------------------------
|
137 |
+
|
138 |
+
# Stop tracking emissions
|
139 |
+
emissions_data = tracker.stop_task()
|
140 |
+
|
141 |
+
# Calculate classification accuracy
|
142 |
+
classification_accuracy = accuracy_score(true_labels, predictions)
|
143 |
+
|
144 |
+
# Calculate mean IoU for object detection (only for images with smoke)
|
145 |
+
# For each image, we compute the max IoU between the predicted box and all true boxes
|
146 |
+
ious = []
|
147 |
+
for true_boxes, pred_box in zip(true_boxes_list, pred_boxes):
|
148 |
+
max_iou = compute_max_iou(true_boxes, pred_box)
|
149 |
+
ious.append(max_iou)
|
150 |
+
|
151 |
+
mean_iou = float(np.mean(ious)) if ious else 0.0
|
152 |
+
|
153 |
+
# Prepare results dictionary
|
154 |
+
results = {
|
155 |
"username": username,
|
156 |
"space_url": space_url,
|
157 |
+
"submission_timestamp": datetime.now().isoformat(),
|
158 |
"model_description": DESCRIPTION,
|
159 |
+
"classification_accuracy": float(classification_accuracy),
|
160 |
+
"mean_iou": mean_iou,
|
161 |
+
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
162 |
+
"emissions_gco2eq": emissions_data.emissions * 1000,
|
163 |
+
"emissions_data": clean_emissions_data(emissions_data),
|
164 |
+
"api_route": ROUTE,
|
165 |
+
"dataset_config": {
|
166 |
"dataset_name": request.dataset_name,
|
167 |
"test_size": request.test_size,
|
168 |
"test_seed": request.test_seed
|
169 |
}
|
170 |
+
}
|
171 |
+
|
172 |
+
return results
|