Commit
·
c58fa6f
1
Parent(s):
8f1ccd0
models
Browse files- .DS_Store +0 -0
- models/.DS_Store +0 -0
- models/best.pt +3 -0
- requirements.txt +3 -1
- tasks/image.py +28 -24
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
models/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
models/best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f901a7a25694ac87ad2ed3a047f5118448c23a4583a8326861daa2104c26218d
|
3 |
+
size 6224483
|
requirements.txt
CHANGED
@@ -7,4 +7,6 @@ pydantic>=1.10.0
|
|
7 |
python-dotenv>=1.0.0
|
8 |
gradio>=4.0.0
|
9 |
requests>=2.31.0
|
10 |
-
librosa==0.10.2.post1
|
|
|
|
|
|
7 |
python-dotenv>=1.0.0
|
8 |
gradio>=4.0.0
|
9 |
requests>=2.31.0
|
10 |
+
librosa==0.10.2.post1
|
11 |
+
torch
|
12 |
+
ultralytics
|
tasks/image.py
CHANGED
@@ -5,7 +5,7 @@ import numpy as np
|
|
5 |
from sklearn.metrics import accuracy_score, precision_score, recall_score
|
6 |
import random
|
7 |
import os
|
8 |
-
|
9 |
from .utils.evaluation import ImageEvaluationRequest
|
10 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
11 |
|
@@ -100,36 +100,40 @@ async def evaluate_image(request: ImageEvaluationRequest):
|
|
100 |
# Update the code below to replace the random baseline with your model inference
|
101 |
#--------------------------------------------------------------------------------------------
|
102 |
|
|
|
|
|
|
|
103 |
predictions = []
|
104 |
true_labels = []
|
105 |
-
pred_boxes = []
|
106 |
-
true_boxes_list = []
|
107 |
-
|
108 |
for example in test_dataset:
|
109 |
-
#
|
|
|
110 |
annotation = example.get("annotations", "").strip()
|
|
|
111 |
has_smoke = len(annotation) > 0
|
112 |
-
true_labels.append(
|
113 |
-
|
114 |
-
# Make random classification prediction
|
115 |
-
pred_has_smoke = random.random() > 0.5
|
116 |
-
predictions.append(int(pred_has_smoke))
|
117 |
-
|
118 |
-
# If there's a true box, parse it and make random box prediction
|
119 |
if has_smoke:
|
120 |
-
# Parse all true boxes from the annotation
|
121 |
image_true_boxes = parse_boxes(annotation)
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
#--------------------------------------------------------------------------------------------
|
135 |
# YOUR MODEL INFERENCE STOPS HERE
|
|
|
5 |
from sklearn.metrics import accuracy_score, precision_score, recall_score
|
6 |
import random
|
7 |
import os
|
8 |
+
from ultralytics import YOLO
|
9 |
from .utils.evaluation import ImageEvaluationRequest
|
10 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
11 |
|
|
|
100 |
# Update the code below to replace the random baseline with your model inference
|
101 |
#--------------------------------------------------------------------------------------------
|
102 |
|
103 |
+
model = YOLO("../models/best.pt")
|
104 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
105 |
+
model = model.to(device)
|
106 |
predictions = []
|
107 |
true_labels = []
|
108 |
+
pred_boxes = []
|
109 |
+
true_boxes_list = []
|
|
|
110 |
for example in test_dataset:
|
111 |
+
# Extract image and annotations
|
112 |
+
image = example["image"]
|
113 |
annotation = example.get("annotations", "").strip()
|
114 |
+
|
115 |
has_smoke = len(annotation) > 0
|
116 |
+
true_labels.append(1 if has_smoke else 0)
|
117 |
+
|
|
|
|
|
|
|
|
|
|
|
118 |
if has_smoke:
|
|
|
119 |
image_true_boxes = parse_boxes(annotation)
|
120 |
+
if image_true_boxes:
|
121 |
+
true_boxes_list.append(image_true_boxes)
|
122 |
+
else:
|
123 |
+
true_boxes_list.append([])
|
124 |
+
else:
|
125 |
+
true_boxes_list.append([])
|
126 |
+
|
127 |
+
results = model .predict(image, verbose=False) #
|
128 |
+
|
129 |
+
if len(results[0].boxes):
|
130 |
+
pred_box = results[0].boxes.xywhn[0].cpu().numpy().tolist()
|
131 |
+
predictions.append(1)
|
132 |
+
pred_boxes.append(pred_box)
|
133 |
+
else:
|
134 |
+
predictions.append(0)
|
135 |
+
pred_boxes.append([])
|
136 |
+
|
137 |
|
138 |
#--------------------------------------------------------------------------------------------
|
139 |
# YOUR MODEL INFERENCE STOPS HERE
|